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Abstract 
In content analysis and similar methods, data are typically generated by trained human observers 
who record or transcribe textual, pictorial, or audible matter in terms suitable for analysis.  
Conclusions from such data can be trusted only after demonstrating their reliability. 
Unfortunately, the content analysis literature is full of proposals for so-called reliability 
coefficients, leaving investigators easily confused not knowing which to choose.  After 
describing the criteria for a good measure of reliability, we propose Krippendorff’s alpha as the 
standard reliability measure.  It is general in that it can be used regardless of the number of 
observers, levels of measurement, sample sizes, and presence or absence of missing data.  To 
facilitate the adoption of this recommendation, we describe a freely available macro written for 
SPSS and SAS to calculate Krippendorff’s alpha and illustrate its use with a simple example. 
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Introduction 
Much communication research is based on data generated by human beings asked to make some 
kind of judgment.  In content analysis, for example, people (for generality, henceforth referred to 
as “observers”) are employed in the systematic interpretation of textual, visual, or audible matter, 
such as newspaper editorials, television news, advertisements, public speeches, and other verbal 
or nonverbal units of analysis.  Generating such data may take the form of judgments of kind (in 
which category does this unit belong?), magnitude (how prominent is an attribute within a unit?), 
or frequency (how often does something occur).  When relying on human observers, researchers 
must worry about the quality of the data—specifically, their reliability.  Are the data being made 
and subsequently used in analyses and decision making the result of irreproducible human 
idiosyncracies or do they reflect properties of the phenomena (units of analysis) of interest on 
which others could agree as well?  The answer to this question can affirm or deny the usability of 
one’s data, and respectable scholarly journals typically require quantitative evidence for the 
reliability of the data underlying published research. 

Among the kinds of reliability—stability, reproducibility, and accuracy—reproducibility 
arguably is the strongest and most feasible kind to test (Krippendorff, 2004a).  It amounts to 
evaluating whether a coding instrument, serving as common instructions to different observers of 
the same set of phenomena, yields the same data within a tolerable margin of error.  The key to 
reliability is the agreement observed among independent observers.  The more observers agree 
on the data they generate, and the larger the sample of units they describe, the more comfortable 
we can be that their data are exchangeable with data provided by other sets of observers (c.f. 
Hayes, 2005), reproducible, and trustworthy. 

Choosing an index of reliability is complicated by the number of indices that have been 
proposed.  For example, Popping (1988) compares an astounding 43 measures for nominal data, 
mostly applicable to reliability data generated by only two observers.  Furthermore, these indices 
respond to rather different properties in the data, some related to reliability, others not.  
Understanding these properties is not a trivial matter but essential to correctly interpreting the 
meaning of such indices (Krippendorff, 2004b).  This complexity combined with the lack of 
consensus among communication researchers on which measures are appropriate lead Lombard, 
Snyder-Duch, and Bracken (2002, 2004) to call for a reliability standard that can span the 
variable nature of available data.  Unfortunately, they do not respond to their own call in a way 
that will help researchers choose a measure, and they leave the reader no better off with respect 
to knowing which measure of reliability should be the measure of choice.  In the rest of this 
paper, we answer that call by suggesting that of the existing measures, Krippendorff’s alpha 
(Krippendorff, 1970, 2004a) is best suited as a standard. It generalizes across scales of 
measurement, can be used with any number of observers with or without missing data, and it 
satisfies all of the important criteria for a good measure of reliability.  Unfortunately, 
Krippendorff’s alpha cannot be calculated by popular statistical packages used in the social 
sciences.  To remedy this situation, we describe a macro written for SPSS and SAS that 
computes Krippendorff’s alpha, thereby allowing for the widespread implementation of our 
recommendation. 



 
Criteria for a Good Measure of Reliability 

Before any statistic can measure reliability, it must be applied to reliability data properly 
obtained.  Specifically, the units of analysis whose properties are to be recorded or described 
must be independent of each other and the data generating process—informed by instructions 
that are common to all observers who identify, categorize, or describe the units—must be 
repeated by different observers working independently of each other. Furthermore, the set of 
units used in the reliability data should be a random sample (or at least approximating one) from 
the universe of data whose reliability is in question, and the observers employed should be 
common enough to be found elsewhere. 

Given such reliability data, a good index of reliability should have the following 
properties: 

(1) It should assess the agreement between two or more observers who describe each of 
the units of analysis separately from each other.  For more than two observers, this 
measure should be (a) independent of the number of observers employed and (b) invariant 
to the permutation and selective participation of observers. Under these two conditions, 
agreement would not be biased by the individual identities and number of observers who 
happen to generate the data.  

(2) It should be grounded in the distribution of the categories or scale points actually used 
by the observers.  Specifically, the index should not be confounded by the number of 
categories or scale points made available for coding.  This assures that reliability is not 
biased by the difference between what the authors of the coding instructions imagined the 
data may be like, and what the data turned out to be. 
(3) It should constitute a numerical scale between at least two points with sensible 
reliability interpretations.  By convention, perfect agreement is set to 1.000 or 100%.  The 
absence of agreement, typically indicated by 0.000 (and not necessarily constituting the 
endpoint of the reliability scale), should represent a situation in which the units of 
analysis bear no statistical relationship to how they end up being identified, coded, or 
described.  These two points enable an index to be interpreted as the degree to which the 
data can be relied upon in subsequent analyses. 

(4) It should be appropriate to the level of measurement of the data.  This demands that 
the information contained between the categories or in the metric underlying the 
reliability data is fully utilized, neither spuriously added nor ignored.  When applying a 
statistic to several kinds of data, it must maintain its mathematical structure, except for 
responding to the properties of the metric involved, and only these.  This enables 
comparisons across different metrics, as required for a reliability standard. 

 (5) Its sampling behavior should be known or at least computable. 
With these criteria in mind, we discuss the adequacy of several measures of reliability that enjoy 
some use by researchers in communication and related fields.  Given space constraints, we do 
not provide mathematical details of the measures, instead referring the interested reader to the 
original sources for this information. 

Percent agreement is simply the proportion of units with matching descriptions on which two 
observers agree.  This measure is easily calculated but flawed in nearly all important respects.  It 



satisfies (1), but only because of its limitation to two observers.  As agreement is the more 
difficult to achieve the more categories are involved, it fails (2).  While 100% is an unambiguous 
indicator of reliability, 0% is not.  Zero percent can arise only when observers disagree on every 
unit being judged.  Such a phenomenon would be unlikely unless observers are working together, 
which violates the condition that reliability data be generated by observers working independent 
of each other. Thus, without a meaningful reliability scale, all deviations from 100% agreement 
become unintelligible, failing (3).  It satisfies (4), but only for nominal data.  Incidentally, the 
above applies also to Osgood’s (1959) index of reliability, christened C.R. by Holsti (1969), 
which is essentially a percent agreement measure.   

Bennett et al’s S (Bennett, Alpert, & Goldstein, 1954). This statistic has been reinvented with 
minor variations at least five times as Guilford’s G (Holley & Guilford, 1964), the R.E. (random 
error) coefficient (Maxwell, 1970), C (Janson & Vegelius, 1979), kn (Brennan & Prediger, 
1981), and the intercoder reliability coefficient Ir. (Perreault & Leigh, 1989).  S responds to the 
failure of percent agreement to satisfy (2), correcting it for the number of categories available for 
coding.  However, S is inflated by the number of unused categories that the author of the 
instrument had imagined and by rarely used categories in the data, thus failing (2) and (3) as 
well.  Because S corrects percent agreement, it is limited to two observers and nominal data.  

Scott’s pi (p) (Scott, 1955) was the first coefficient to fully satisfy (2) and (3).  It corrects percent 
agreement, much like S does, but by the agreement that is expected when the units are 
statistically unrelated to their descriptions, “by chance,” thus constituting a scale with valid 
reliability interpretations.  But this correction does not overcome the limitations of percent 
agreement to two coders and nominal data.   

Cohen’s kappa (k).  Cohen (1960) intended to improve on Scott’s p but created a hybrid index 
instead.  Kappa corrects percent agreement, just as do S and p, but by what can be expected 
when the two observers are statistically independent of each other.  Kappa violates (1) by not 
allowing observers to be freely permutable or interchangeable and it violates (3) by defining its 
zero point as would be appropriate in correlation or association statistics.  Kappa, by accepting 
the two observers’ proclivity to use available categories idiosyncratically as baseline, fails to 
keep k tied to the data whose reliability is in question.  This has the effect of punishing observers 
for agreeing on the frequency distribution of categories used to describe the given phenomena 
(Brennan & Prediger, 1981, Zwick, 1988) and allowing systematic disagreements, which are 
evidence of unreliability, to inflate the value of k (Krippendorff, 2004a, 2004b).  Kappa retains 
the limitations of percent agreement to two observers and nominal data.  Cohen (1960) and Fleiss 
et al. (2003) discuss approximations to (5).  However, its applicability in other empirical 
domains notwithstanding, k is simply incommensurate with situations in which the reliability of 
data is the issue.  

Fleiss’s K.  Fleiss (1971) generalized Scott’s p to many observers, calling it kappa. This 
confusion led Siegel and Castellan (1988) to rename it K.  Just as Scott’s p, K satisfies (1) but for 
two or more observers.  By fulfilling (3), K avoids k’s aforementioned numerical biases but 
remains limited to nominal data.   

Cronbach’s (1951) alpha (aC) is a statistic for interval-level data that responds to the consistency 
of observers when numerical judgments are applied to a set of units.  It is called a reliability 



coefficient but does not measure agreement as required by (1).  Instead, it quantifies the 
consistency by which observers judge units on an interval scale without being sensitive to how 
much the observers actually agree in their judgments.  Without defining scale points with valid 
reliability interpretations—at least not regarding reproducibility as described in the foregoing—
aC  fails to satisfy (3) and is therefore unsuitable to assess reliability of judgments.  It is 
appropriate as a measure of the reliability of an aggregate measure across observers, such as the 
arithmetic mean judgment, but it does not directly index the extent to which observers actually 
agree in their judgments.  

Krippendorff’s (1970, 2004a) alpha (a) satisfies all of the above conditions and we propose it as 
the standard reliability statistic for content analysis and similar data making efforts.  Regarding 
(1), a counts pairs of categories or scale points that observers have assigned to individual units, 
treating observers as freely permutable and being unaffected by their numbers.  This dispels the 
common belief that reliability is the more difficult the more observers are involved.  Regarding 
(2), a is exclusively rooted in the data generated by all observers.  Regarding (3), a defines the 
two reliability scale points as 1.000 for perfect reliability and 0.000 for the absence of reliability, 
i.e., as if categories or scale points were statistically unrelated to the units they describe—not to 
be confused with the statistical independence of observers (as in k).  Regarding (4), a measures 
agreements for nominal, ordinal, interval, and ratio data, rendering the reliabilities for such data 
fully comparable across different metrics.  Regarding (5), below we avoid assuming 
approximations and, instead, bootstrap the distribution of a from the given reliability data. 

Krippendorff’s a defines a large family of reliability coefficients and embraces several 
known ones.  It accomplishes this by calculating disagreements instead of correcting percent-
agreements, avoiding its above-mentioned limitations.  In its two-observer nominal data version, 
a is asymptotically equal to Scott’s p.  In its two-observer ordinal data version, a is identical to 
Spearman’s rank correlation coefficient r (rho) (without ties in ranks).  In its two-observer 
interval data version, a equals Pearson et al.’s (1901) intraclass-correlation coefficient.  Its 
extension to many observers is stated in analysis of variance terms (Krippendorff, 1970).  Thus, 
a is in good company.  Alpha also allows for reliability data with missing categories or scale 
points, a frequent reality that none of the reviewed measures has been able to cope with.   

 
SPSS and SAS Implementation: The KALPHA Macro 

There is little point to proposing a standard in the absence of computational support from 
existing software.  Unfortunately, with a few exceptions, Krippendorff’s a is not available in the 
majority of statistical software packages widely used by researchers, such as SPSS and SAS.1  
To facilitate the adoption of our recommendation, we have produced a macro (KALPHA) for 
these computing platforms that computes Krippendorff’s a.  A macro is a set of commands that, 
when executed, produces a new shortcut command that accepts arguments the user specifies to 
make the command set produce the desired output.  Space constraints preclude the publication of 
the macro in this article.  Interested readers are referred to http://www.comm.ohio-
state.edu/ahayes/macros.htm where a copy of the macro can be downloaded and instructions for 

 
1 Kang, Kara, Laskey, & Seaton (1993) provide a SAS macro that calculates several reliability measures, including 
Krippendorff’s alpha for nominal, ordinal, and interval data.  However, their macro does not allow for missing data 
and it does not generate statistics useful for statistical inference, as our macro does. 



its use are provided.  In the rest of this article, we describe the functionality of the macro and 
work through a single example. 

The data for this example come from five observers who were asked to evaluate the local 
news coverage given to the challenger running against an incumbent for a political office in one 
of several political races.  The observers were given 40 newspaper articles describing the race 
published by the largest circulation newspaper in the incumbent’s district within one week prior 
to the election.  These 40 articles were randomly selected from the pool of all articles published 
during that one week period.  Observers rated whether the tone of the article suggested the 
challenger was a sure loser (0), somewhat competitive (1), competitive (2), or a likely winner 
(3).  After training, observers read and judged the articles independently.  The data were entered 
into SPSS such that each article was represented with a row in the data file, and each observer’s 
evaluation of the articles was located in the columns, with the columns labeled “obs1”, “obs2” 
“obs3”, “obs4”, and “obs5”.  Thus, in this example, the data occupied a 40 (articles) × 5 
(observers) matrix, with each cell in the matrix containing a 0, 1, 2, 3 or a period character (“.”) 
for missing judgments (see Table 1).  To compute a, the following command was executed in 
SPSS after activating the KALPHA macro: 

KALPHA judges = obs1 obs2 obs3 obs4 obs5/level = 2/detail = 1/boot = 10000. 
The “/level” subcommand provides information to the macro about the level of measurement of 
the judgments (1 = nominal, 2 = ordinal, 3 = interval, 4 = ratio). The “/detail” subcommand tells 
the macro to print (1) or suppress the printing (0) of the computational details such as the 
observed and expected coincidence matrices and the delta matrix (see Krippendorff, 2004a). 

The output from the macro is displayed in Figure 1.  As can be seen, Krippendorff’s 
ordinal a  is 0.7598, a modest degree of reliability.  In the observed coincidence matrix, the 
disagreements between observers cluster around the diagonal containing perfect matches.  A 
coincidence matrix should not be confused with the more familiar contingency matrix, which is 
used to represent data for two observers and define other estimators of reliability.  The expected 
coincidence matrix can be interpreted as what would be expected under conditions of “chance”, 
as if observers responded independent of the properties of the units they were asked to describe.  
The delta matrix visualizes how a weights the coincidences according to the level of 
measurement of the data.  For technical details on the construction of the observed and expected 
coincidence and delta matrices, see Krippendorff (2004a)2.  

The macro output also provides statistics pertinent to statistical inference.  The obtained 
value of a is subject to random sampling variability—specifically, variability attributable to the 
selection of units in the reliability data and the variability of their judgments.  It is generally of 
interest to infer the true value of alpha, atrue— if the measure were applied to the whole universe 
of units rather than to the sub sample used to estimate data reliability— and the likelihood of 
atrue being below the minimally acceptable a-value.3 To answer these two questions, one needs 
to know the sampling distribution of a. Unfortunately, the sampling distribution of a is not 

 
2 Computational details can also be obtained by downloading the document at 
http://www.asc.upenn.edu/usr/krippendorff/webreliability2.pdf or http://www.comm.ohio-
state.edu/ahayes/macros.htm 
3 Investigators often ask whether observed agreement is sufficiently above “chance.”  However, this null-hypothesis 
is irrelevant where data reliability is considered. For data to be trustworthy, their reliability must not significantly 
deviate from perfect reliability, which calls for a rather different test.  The question is whether observed 
unreliabilities are still tolerable for data to be relied upon in subsequent analyses. 



known and existing approximations are rough at best.  However, this sampling distribution can 
be empirically generated by bootstrapping (see e.g., Mooney & Duval, 2003, or Efron & 
Tibshirani, 1998, for a discussion of the rationale for bootstrapping in statistical inference).  This 
is accomplished by acknowledging that the units of bootstrapping for reliability are the pairs of 
judgments associated with particular units.  With 5 observers judging 40 units, there are 200 
judgments possible and 400 pairs of judgments (10 pairs per unit).  But in the 40 × 5 matrix of 
judgments in Table 1 there only 159 judgments because not all observers judged all 40 units, 
resulting in only 239 pairs of judgments.  The bootstrap sampling distribution of alpha is 
generated by taking a random sample of 239 pairs of judgments from the available pairs, 
weighted by how many observers judged a given unit.  Alpha is computed in this “resample” of 
239 pairs, and this process is repeated very many times, producing the bootstrap sampling 
distribution of a.44   We use this sampling distribution to produce 95% confidence intervals for 
atrue, whose lower and upper limits are the values of a that define the 2.5th and 97.5th  percentiles 
of the bootstrap distribution, respectively.  Using the bootstrap sampling distribution, it is also 
possible to estimate the probability, q, that the reliability, atrue, is less than the required minimum 
value, amin   The larger the number of bootstrap samples taken, the more accurate the inferential 
statistics will be, but computational time will be longer.  Fortunately, little additional precision is 
gained by setting the number of bootstrap samples larger than 10,000 or so.   

The macro implements bootstrapping, with the number of bootstrap samples determined 
by the optional “/boot” subcommand (if this option is left out of the command, bootstrapping is 
disabled and the statistics described below are not printed).  The macro saves the bootstrap 
estimates of a into a file, and this file can be used to generate a visual representation of the 
distribution of a (see Figure 2). In this example, 10,000 bootstrap samples were taken to produce 
confidence intervals at the 95% level and estimates of q for several amin (here amin= 0.9, 0.8, 0.7, 
0.67, 0.6, 0.5).  As can be seen in Figure 1, the confidence interval for atrue is 0.7078 to 0.8078, 
meaning that if the population of units were coded, reliability would likely be somewhere 
between these two values.  The probability, q, of failing to achieve amin is displayed for five 
values of amin.  As can be seen, q = 0.0125 for amin = 0.70, and q = 0.9473 for amin = 0.80.  In 
other words, if this research problem demands that reliability must not be below amin = 0.800, 
our reliability data would suggest serious trouble.  If the reliability standard were relaxed to amin 
= 0.700, the risk of accepting the data as reliable when they are not is quite low, q = 0.0125.   

It is worth pointing out that the obtained alpha is always higher than its nominal version 
when the observers’ disagreements conform to the metric of the chosen a.  In our example, 
disagreements, which can be examined in the coincidence matrix, are not randomly distributed in 
the off-diagonal as would be expected if data were nominal. In fact, they cluster around the 
diagonal and, moreover, most ranks on which coders disagree are just one rank apart.  If the data 
were treated as nominal data, a = 0.4765, whereas the ordinal a is 0.7598.  By the same token, 
the interval a is 0.7574 and the ratio a is 0.6621, attesting to the fact that the majority of 
observed disagreements confirm the observers’ ordinal conceptions.  

 

 
4 A document describing the bootstrapping algorithm can be found at http://www.comm.ohio-
state.edu/ahayes/macros.htm 



Conclusion 

In this article, we outlined the reasons why Krippendorff’s a should be the standard measure of 
reliability in content analysis and similar data making efforts.  Although this statistic has been 
known for over 30 years and used in simple cases, its lack of implementation in popular 
statistical packages has undoubtedly prevented the full utilization of its capabilities.  We hope 
that the macro described here will encourage researchers to take advantage Krippendorff’s a 
rather than one of the dozens of other measures, none of which is as well suited to the task. 
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Table 1.     Example Reliability Data Set 
 

 
 

Unit 
 

obs1 
 

 
obs2 

 
obs3 

 
obs4 

 
obs5 

 
1 

 
1 

 
1 

 
2 

 
. 

 
2 

2 1 1 0 1 . 
3 2 3 3 3 . 
4 . 0 0 . 0 
5 0 0 0 . 0 
6 0 0 0 . 0 
7 1 0 2 . 1 
8 1 . 2 0 . 
9 2 2 2 . 2 
10 2 1 1 1 . 
11 . 1 0 0 . 
12 0 0 0 0 . 
13 1 2 2 2 . 
14 3 3 2 2 3 
15 1 1 1 . 1 
16 1 1 1 . 1 
17 2 1 2 . 2 
18 1 2 3 3 . 
19 1 1 0 1 . 
20 0 0 0 . 0 
21 0 0 1 1 . 
22 0 0 . 0 0 
23 2 3 3 3 . 
24 0 0 0 0 . 
25 1 2 . 2 2 
26 0 1 1 1 . 
27 0 0 0 1 0 
28 1 2 1 2 . 
29 1 1 2 2 . 
30 1 1 2 . 2 
31 1 1 0 . 0 
32 2 1 2 1 . 
33 2 2 . 2 2 
34 3 2 2 2 . 
35 2 2 2 . 2 
36 2 2 3 . 2 
37 2 2 2 . 2 
38 2 2 . 1 2 
39 2 2 2 2 . 
40 1 1 1 . 1 

 
 



 Figure 1.  Output from the SPSS KALPHA macro 

 
kalpha judges = obs1 obs2 obs3 obs4 obs5/level = 2/detail = 1/boot = 10000. 
 
Run MATRIX procedure: 
 
Krippendorff's Alpha Reliability Estimate 
 
 
             Alpha    LL95%CI    UL95%CI      Units   Observrs      Pairs 
Ordinal      .7598      .7078      .8078    40.0000     5.0000   239.0000 
 
Probability (q) of failure to achieve an alpha of at least alphamin: 
   alphamin          q 
      .9000     1.0000 
      .8000      .9473 
      .7000      .0125 
      .6700      .0004 
      .6000      .0000 
      .5000      .0000 
 
Number of bootstrap samples: 
  10000 
 
Judges used in these computations: 
 obs1     obs2     obs3     obs4     obs5 
 
==================================================== 
 
Observed Coincidence Matrix 
     32.33      8.83       .83       .00 
      8.83     25.33     13.17       .67 
       .83     13.17     35.83      6.17 
       .00       .67      6.17      6.17 
 
Expected Coincidence Matrix 
     10.90     12.76     14.89      3.46 
     12.76     14.28     17.01      3.95 
     14.89     17.01     19.49      4.61 
      3.46      3.95      4.61       .99 
 
Delta Matrix 
       .00   2025.00   9409.00  17292.25 
   2025.00       .00   2704.00   7482.25 
   9409.00   2704.00       .00   1190.25 
  17292.25   7482.25   1190.25       .00 
 
Rows and columns correspond to following unit values 
       .00      1.00      2.00      3.00 
 
------ END MATRIX ----- 
 
 
 
 



 
Figure 2.  A graphical representation the sampling distribution of alpha from 10,000 bootstrap 
samples from the data in Table 1. 
 
 
 

   


