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Methods for analyzing neural and computational social 
science data are usually used by different types of sci-
entists and generally seen as distinct, but they strongly 
complement one another. Computational social science 
methodologies can strengthen and contextualize indi-
vidual-level analysis, specifically our understanding of 
the brain. Neuroscience can help to unpack the mecha-
nisms that lead from micro- through meso- to macro-
level observations. Integrating levels of analysis is 
essential to unified progress in social research. We 
present two example areas that illustrate this integra-
tion. First, combining egocentric social network data 
with neural variables from the “egos” provides insight 
about why and for whom certain types of antismoking 
messages may be more or less effective. Second, com-
bining tools from natural language processing with 
neuroimaging reveals mechanisms involved in success-
ful message propagation, and suggests links from 
microscopic to macroscopic scales.
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Much of the initial excitement and pur-
ported promise of big data has come 

from discovery of correlations between events 
that were difficult to observe using traditional 
analytical approaches and datasets. For exam-
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ple, data obtained from web search log files (i.e., objective records of which 
products people search for online during a specific timeframe) have been predic-
tive of outcomes ranging from consumer demand for cars, travel destinations, 
employment trends, and the movement of financial markets ahead of and beyond 
the traditionally constructed models (Carrière-Swallow and Labbé 2013; Choi 
and Varian 2012; Preis, Moat, and Stanley 2013). One major advantage of these 
big data is their ability to directly observe certain kinds of behavior (e.g., car 
purchases, ticket purchases, etc.); however, such big data often lack the ability to 
pinpoint the socio-psychological mechanisms that lead to the relationships 
observed. We argue that affordances of new technology, such as the ability to 
directly examine neural activity in real time, and the ability to directly observe 
online behaviors, strengthen our ability to test theoretical claims and that this can 
be optimally achieved by combining computational social science methods with 
methods optimized for deep interrogation of individual psychology. Indeed, 
fields such as communication science, political science, and public health have 
long triangulated between large-scale observation of population-level phenom-
ena and laboratory investigations of causal pathways. One defining feature of the 
current moment, however, is the convergence of methods for aggregating indi-
vidual behaviors into macro-level trends,1 methods for recording information 
about meso-level social environments, and methods for gaining deeper insights 
about micro-level psychological and neural mechanisms that produce individual 
cognitive, affective, and social characteristics and behaviors. In this discussion we 
circumscribe the levels of analysis that we will treat as follows:

1. Micro-level: psychological processes and neural mechanisms within an indi-
vidual that are related to that individual’s behavior;

2. Meso-level: proximal social contextual factors such as social network ties 
that influence an individual’s behavior; and

3. Macro-level: large-scale patterns of observed behavior, generally formed by 
aggregating individual-level behaviors at a large scale.

More specifically, we focus on the promise of integrating one form of data that 
provides a window into the individual (micro) level processes—neural measures— 
with two key types of data—language and networks—commonly analyzed at 
meso and macro scales. These latter two types of data and associated computa-
tional analytic techniques are core elements of computational social science 
(Lazer et  al. 2009). We argue that both neuroscience and population sciences 
have much to gain in this dialogue (Falk et al. 2013). From the perspective of 
neuroscientists, growing evidence points to the importance of social and environ-
mental factors in shaping neural development, structure, and function (Pfeifer 
and Blakemore 2012; Gianaros et al. 2007; Hanson et al. 2013; Kanai et al. 2012); 
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however, few neuroscience investigations sample participants with respect to 
their social network characteristics or other variables emphasized by computa-
tional social science or make use of such data in interpreting brain function (Falk 
et al. 2013). Likewise, many models in computational social science acknowledge 
individual differences in person-level parameters and make assumptions about 
processes that by definition arise in the brains of individuals (cognition, affect, 
communication, and interpretation of social signals), but these assumptions are 
rarely tested (Pfeiffer et al. 2013). In the following sections, we provide examples 
of investigations that have begun to integrate neural measures with two (of many) 
types of data that form some of the backbone of computational social science. In 
the first example, we present data regarding media effects at macro and micro 
levels of analysis, and suggest that data gathered at the meso level regarding par-
ticipants’ social networks can help to contextualize the effects observed. Second, 
we present data regarding neural precursors of idea transmission and suggest 
ways in which linguistic analysis might scale the findings observed from micro to 
macro levels of analysis. We conclude by emphasizing the potential for both 
zooming in to consider so-called big data under a finer-focused microscope and 
zooming out to consider the brain in a wider meso-level social context, as well as 
related aggregate macro-level effects.

Example 1: Understanding the Effectiveness of 
Antismoking Messages

Questions about what makes messages effective span levels of analysis from the 
individual ([micro] e.g., What factors of the message are likely to make a person 
change their behavior?) to the population level ([macro] e.g., How should a mass 
media campaign be framed to make the greatest impact?). In this example we 
focus on persuasive health messages and specifically those relating to smoking 
behaviors. We suggest that integrating techniques from computational social sci-
ence and neuroscience may help to build understanding of how mediated inputs 
produce behavioral outputs across levels of analysis.

The data reported here are part of a larger study of image-based ads designed 
to promote engagement with online smoking cessation aids. The dataset contains 
both a macro/population-level (logged data on clicks generated by emails sent to 
eight hundred thousand smokers in New York State) and a micro/individual-level 
component (a group of fifty smokers who underwent a neuroimaging protocol 
where they viewed the ads) (Falk et al. 2014). The images were modeled after 
the graphic warning labels for tobacco recently proposed by the U.S. Food and 
Drug Administration (FDA) and framed with the text “Stop Smoking. Start 
Living.” The images portrayed either social or health consequences of smoking 
or the social or health benefits of quitting smoking (twelve social and twenty-
eight nonsocial/health framed images). For example, an image of a smoker having 
to stand separately from their coworkers was classified as a negative social fram-
ing compared to a negative nonsocial/health image that showed the effects of 
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smoking on teeth. At the population level, these images were used in an email 
distribution campaign in which eight hundred thousand smokers in New York 
State received a single email containing one of the forty images along with links 
to online quit-smoking resources managed by the New York Department of 
Public Health. Each image was distributed to twenty thousand unique smokers 
and the click through rate (CTR) was recorded for each image. The CTR, a meas-
ure of the effectiveness of the campaign, for the nonsocial (health) images was 
higher (16.2 percent) than for the socially framed images (14.2 percent) (t(38) = 
2.12, p = .04) In other words, smokers receiving messages framed with health 
content were more likely to click to get more information than those receiving 
socially framed messages. These differences were not explained by measures 
relating to argument strength and thought favorability (Zhao et  al. 2011) that 
were gathered from ratings by an independent group of smokers. This was a puz-
zle for the research team; although strong health risk messages have been dem-
onstrated to be effective in promoting positive smoking relevant outcomes 
(Hammond et al. 2006), social norms are also known to be strong motivators of 
behavior (Cialdini and Goldstein 2004). Why then, despite producing similar 
levels of favorability (i.e., thoughts about quitting or not quitting smoking), did 
the socially framed messages not persuade smokers to seek more information in 
the large-scale campaign? One possibility is that the social messages failed to 
elicit social thinking, their key ingredient. A second possibility, however, is that 
the social messages may have primed social thinking (i.e., thinking about 
instances of social interaction), but the social referents called to mind may not 
have called to mind norms that would discourage smoking.

To further probe these possibilities, and examine the mechanisms involved in 
processing the two types of messages, we conducted a separate study in which we 
collected micro-level neural data in fifty smokers during real-time exposure to 
each of the forty images used in the population-level email campaign, as well as 
an additional twenty images to more evenly balance across social and health cat-
egories (twenty-seven of the sixty images were classified as social and the remain-
ing thirty-three as nonsocial/health related). We were particularly interested in 
neural mechanisms given the biases inherent in retrospective self-reports of 
psychological reactions to messages (Noar 2006; Wilson and Nisbett 1978; 
Wilson and Schooler 1991). Functional magnetic resonance imaging (fMRI) 
allows monitoring of neurocognitive responses as they occur. The data presented 
here are from forty of these fifty smokers for whom we were able to collect net-
work data as described below.

To test whether the social messages might have been ineffective due to a fail-
ure to elicit social processes, compared to the alternative hypothesis that social 
processes may have been elicited but failed to have the desired effect, we drew 
on a large body of literature that has characterized brain regions involved in one 
type of social thinking—considering the mental states of others, often called 
“mentalizing”; for example, mentalizing might involve understanding that 
another person has different information or beliefs than one’s own and working 
to decode that other person’s motives. Mentalizing consistently recruits neural 
activity in the brain’s dorsomedial prefrontal cortex (DMPFC) and posterior 
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cingulate cortex (PCC) and the tempoparietal junction (TPJ) (Atique et al. 2011; 
Denny et al. 2012; Saxe and Kanwisher 2003). Thus, if social and health messages 
did not differ in the neural response they produced within these regions, we 
might conclude that the social messages failed to elicit the type of mentalizing on 
which their effectiveness should be based. However, if social messages do elicit 
greater mentalizing activity, other explanations would need to be explored.

To examine these possibilities, we focused on data from the fMRI scan in 
which each smoker was exposed to all sixty images along with the text “Stop 
Smoking. Start Living.” After viewing each image for four seconds, subjects made 
a rating responding to the prompt, “This makes me want to quit” (1 = definitely 
does not to 5 = definitely does). Neural activity was modeled for each subject 
using the general linear model using Statistical Parametric Mapping (SPM8, 
Wellcome Department of Cognitive Neurology, Institute of Neurology, London, 
UK). We compared neural activity during exposure to social versus nonsocial 
images, as well as the interaction between proportion of smokers in a smoker’s 
ego network (a meso-level feature) and their neural response to socially framed 
(vs. health-framed) smoking cessation messages.

Preliminary analysis of the smokers’ responses to the socially framed versus 
nonsocially framed messages revealed robust activity within the mentalizing net-
work (i.e., a series of neural regions that have been associated with thinking about 
the mental states of others) within the DMPFC, TPJ, and the precuneus (Atique 
et  al. 2011; Denny et  al. 2012; Saxe and Kanwisher 2003) (see Figure 1A; 
Table 1). This is consistent with the hypothesis that the social messages did prime 
social thinking to a greater degree than messages focusing on personal health and 
other topics. This suggests that a different explanation is needed to explain the 
population-level response to the social images. Our alternative hypothesis was 
that despite activating social thoughts, the social referents called to mind may not 
have discouraged smoking. In line with this possibility, we hypothesized that 
meso-level features of a smoker’s social environment might influence how smok-
ers respond to socially framed health messages.

More specifically, we focused on egocentric networks (or egonets), which are 
social networks focused on a particular individual (the ego, in this case, was our 
smoking participants) and consist of the immediate connections (e.g., direct rela-
tionships) between the ego and other people with whom they are connected 
(referred to as alters) within a specific realm (e.g., an organizational context, an 
activity group such as a sports team, or an online social network such as Facebook) 
and the connections between the alters (friend-to-friend connections) (Everett 
and Borgatti 2005; Marsden 2002; Burt et al. 2012). Such network resources can 
be viewed as individual differences or personality measures (Burt 2011; Burt, 
Kilduff, and Tasselli 2013), and have been shown to be critical for a number of 
important outcomes including individual health and well-being and civic engage-
ment (Christakis and Fowler 2008).

To quantify our participants’ egonets, we developed a web-based application 
designed to collect the three components of individual ego networks (alters, 
friends they have communicated with recently; alter characteristics, whether 
these friends are smokers; and alter-alter connections, whether two friends know 
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FIGURE 1
Neural Activity

NOTE: (A) Neural activity in group of smokers (n = 40) when viewing socially framed anti-
smoking images contrasted to viewing nonsocial (health related) images (p < .005, k = 40, x = 
–6, y = 67, z = 19). (B) Neural activity in DMPFC associated with higher proportion of smok-
ers in self-reported ego network in social > nonsocial contrast (p < .005, k = 40, x = 15, y = 46, 
z = 46). DMPFC = dorsomedial prefrontal cortex; PC = precuneus; PCC = posterior cingulate 
cortex; TPJ = temporoparietal junction.
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each other). Among other elements, this allows us to reconstruct selected fea-
tures of an individual participant’s social environment. In this study, we collected 
ego networks from the group of forty smokers using the web-based application. 
The smokers were asked to list the names of key family members who they felt 
particularly close to, up to twenty people they had called or received a call from 
on their cell phone in the past week, up to twenty people they had texted or 
received a text from in the past week, the names of up to twenty Facebook 
friends they had most recently interacted with (this was collected automatically 
for participants who gave permission), and the names of any other individuals not 
included in these lists but with whom they felt particularly close. They were 
asked to merge duplicates from across these lists and then answered a series of 
questions about each unique name including whether the individual was a regu-
lar smoker. Finally, they indicated whether each of the alters knew each other. 
Figure 2 shows the ego networks from four example smokers in the study; Table 
2 summarizes some of the statistics for these networks.

Notably, the proportion of smokers within our participants’ egonets varied 
substantially (0–80 percent, mean 29 percent, SD = 18.15), as did the position of 
smokers within the network (e.g., average closeness of the ego to smokers com-
pared to nonsmokers) (in twenty-three of the thirty-five egonets that contained 
both smokers and nonsmokers, smokers were rated as closer than nonsmokers).

We next examined the effect of this social environmental variable on neural 
responses during exposure to the social images compared to health images. 
Figure 1B shows a cluster in the DMPFC, indicating that smokers with a greater 
proportion of smokers in their reported ego networks show greater levels of activ-
ity in this region when viewing socially framed images compared to when they 

TABLE 1
Neural Activity in Smokers’ Brains Associated with Viewing Social > Nonsocial Images

Local Max  

Region x y z K t-stat

Left TPJ –50 –64 25 1,546 8.79
Right TPJ 42 –64 19 1,536 9.56
Precuneus –2 –57 31 571 8.92
DMPFC –6 67 19 356 4.97
Left IFG –50 26 19 240 4.72
Left MFG –50 1 52 181 3.87
Calcarine (left & right) 8 –102 4 157 3.73
Right IFG 35 15 25 126 4.08
VMPFC 1 56 –17 67 3.77
Right cerebellum 22 –78 –32 56 5.24

NOTE: See Figure 1A. DMPFC = dorsomedial prefrontal cortex; TPJ = temporoparietal junc-
tion; MFG = middle frontal gyrus; IFG = inferior frontal gyrus; VMPFC = ventromedial pre-
frontal cortex.
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view nonsocial (health) framed images. Furthermore, activity within this specific 
subregion of the mentalizing system was negatively associated with changes in 
smokers’ intentions to quit (t(38) = –2.28, p = .028) (Figure 3). Thus, smokers 
with a higher proportion of smokers in their ego network who engaged in greater 
levels of activity within the hypothesized mentalizing regions while viewing 
socially framed antismoking images were less likely to increase their intentions 
(or more likely to decrease their intentions) to quit in the month following the 
scan.

Although one of many possible explanations, taken together, these data are 
consistent with the idea that when viewing socially framed antismoking images 
smokers with a high proportion of smokers in their ego networks engage in 
greater levels of mentalizing compared to those with a lower proportion of 

FIGURE 2
Example Egonets Reported by Smokers in Study

NOTE: The individual (EGO) is represented by the white node in the center. The size of 
friend (ALTER) nodes represents a closeness rating made using a graphical “distance from 
self” interface and converted to a 1 (not at all close) to 7 (extremely close) scale). Green nodes 
represent nonsmokers and red nodes represent friends who are smokers. The four different 
node shapes capture the recency (the last seen rating), with the circle for friends seen in the 
last week, pentagon for those seen within the last month, the left pointing triangle (“<”) for in 
the last year (i.e., “less than a year”) and the right pointing (“>”) for more than a year ago. The 
edges in the network indicate that two individuals know each other. Compare ego networks A 
and D both with twenty-two ALTERS. Table 2 contains a range of network measures from the 
four egonets.
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smokers in their network; consideration of the mental states of others may not 
reduce smoking, though, precisely because a high proportion of the people that 
smokers are thinking about are smokers themselves.

Additional work is clearly needed to more definitively support several of the 
inferential leaps that we have suggested (e.g., that smokers with higher propor-
tions of smokers in their networks automatically call these referents to mind), and 
to link large scale responses to campaign messages with both micro-level 

TABLE 2
Network Measures for Example Smoker Egonets

Measure Network A Network B Network C Network D

Friends 22 20 22 22
Smokers (%) 3 (0.14) 5 (0.25) 11 (0.5) 9 (0.41)
Average closeness 1.68 5.3 5.73 1.32
Smoker average closeness 3.33 5.6 6.18 1.11
Nonsmoker average closeness 1.42 5.2 5.27 1.46

FIGURE 3
Neural Activity Associated with Proportion of Smokers in Ego Network in DMPFC 
Predicts Change in Self-Reported Intention to Quit between Initial and Final Study 

Appointments

NOTE: Initial study appointment = preexposure; final study appointment = 1 month after scan 
session. t(38) = –2.28, p = .028.
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psychological and neurocognitive responses to messages, and to interactions with 
meso-level social environments. We view this example as suggestive, however, of 
the types of links that could be fruitful to explore further. Combining meso-views 
of individuals’ social networks and their micro-level neural responses to social 
stimuli could offer insights into the mechanisms associated with behaviors 
observable across levels, and might also inform the design of campaigns that are 
optimized for the social environments of target audiences. Additional methods 
for connecting network measures with neural variables might include sampling 
strategically from larger-scale network studies or scanning individuals who are 
embedded within different experimentally manipulated social structures (Centola 
2011; Contractor and DeChurch 2014).

Example 2: Understanding the Spread of Ideas

The spread of ideas from individual to individual and eventually to larger groups 
is a second area that engages analysis at the micro-, meso- and macro-levels. At 
the macro-level, tools from computational social science, specifically those that 
quantify language (e.g., categorical word counts, sentiment analysis, and other 
more sophisticated tools from the field of natural language processing; see 
Grimmer and Stewart [2013] for an overview), have been used to examine pat-
terns of language associated with ideas that go viral in social media, news items 
that are more likely to be shared, and features of tweets that are associated with 
higher probability of being retweeted (Bhattacharya and Ram 2012; Go, Bhayani, 
and Huang 2009; Gruzd, Doiron, and Mai 2011; Suh et  al. 2010). With large 
volumes of data, automated analysis of language to identify these features is nec-
essary. Opinion mining or sentiment analysis tools, particularly those making use 
of machine learning approaches, have been particularly popular for synthesizing 
language data at large scales to extract meaning. For example, both the volume 
and sentiment (measured using linguistic analysis) of weblog discussion of movies 
has been shown to predict box office performance (Asur and Huberman 2013; 
Mishne 2006). Higher volumes of positive evaluative discussion (e.g., Tweets) 
about a movie are associated with better ongoing performance at the box office. 
Findings such as these cannot, however, speak in any detail to questions about 
the specific mechanisms involved at the individual level. What factors make an 
idea particularly salient to an individual who subsequently describes it to others 
in an enthusiastic manner?

Psychologists have begun to document the features of communicators, mes-
sages, and recipients that make it most likely that ideas will successfully spread 
from one person to the next (Berger and Schwartz 2011). Yet these investigations 
are sometimes limited by individuals’ lack of ability to identify the internal mental 
processes that precede successful sharing. As noted above, functional neuroimag-
ing allows recording of neural activity in real time during a psychological experi-
ence such as learning about an idea that one might later share with others. We, 
and others, have leveraged this ability to examine the underlying neurocognitive 
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processes that take place during initial idea exposure and go on to predict suc-
cessful idea sharing.

For example, in one recent study (Falk, O’Donnell, and Lieberman 2012), we 
examined neural processes associated with enthusiastic propagation of ideas from 
one person to the next using a combination of fMRI data and automated linguis-
tic sentiment analysis. Our goal was to determine what types of cognitive pro-
cesses are active that go on to predict later enthusiastic sharing of ideas. By 
employing automated sentiment analysis to characterize this enthusiasm, we 
positioned the study to link what happens in the brains of a small number of 
participants to larger-scale enthusiasm expressed in other contexts.

More specifically, in a message propagation task, we scanned participants who 
were directed to imagine they were acting as interns in a TV production com-
pany. Their role was to read ideas for potential new shows and to indicate 
whether they would recommend the show to their producer. After seeing twenty-
four show ideas during a scanning session they were asked to talk about each 
show on video so that their producer could respond to their recommendations. 
The videos produced by the participants were transcribed and classified using a 
sentiment analysis (SA) algorithm trained on texts from a movie review corpus. 
The SA consisted of two separate binary classifiers. One distinguished between 
evaluative and descriptive texts, trained using texts from the IMDb (descriptive) 
and Rotten Tomatoes (evaluative) websites. And the second captured polarity 
(i.e., positive/negative) for evaluative texts, trained using the star ratings and text 
from a standard movie review corpus (Pang, Lee, and Vaithyanathan 2002). The 
SA returned both category labels (e.g., neutral, for descriptive texts, or positive/
negative for evaluative texts) and classification probabilities.

We combined these quantitative language scores with the neural activity 
recorded when participants were exposed to the TV show ideas and examined 
which areas of the brain were associated with (1) the use of positive language 
overall and (2) highly evaluative positive language (see Figure 4). Show descrip-
tions with high positivity scores showed an association with increased neural 
activity in brain regions that are most commonly associated with self-related 
processes, medial prefrontal cortex (MPFC) and the PCC and precuneus (PC) 
(Lieberman 2010). These data are consistent with the possibility that neural 
activity connected with participants’ own traits and motivations (e.g., “I like this 
show” or “This show is relevant to me”) may have positioned participants to later 
talk about show ideas using more highly positive language. That is, participants 
who found specific TV show ideas particularly self-relevant may have tended to 
use language patterns in their subsequent description of those shows that are 
associated with highly positive recommendation reviews.

Next we combined the two scores from the SA (evaluative*positivity) to pro-
duce a score between –1 (highly negatively evaluative) and 1 (highly positively 
evaluative). This score relates to show descriptions that are strongly evaluative 
and positively framed. We found that more positive and evaluative language was 
associated with neural activity in one of the primary regions discussed in example 
one as supporting mental state inference—right TPJ. In this context, the ten-
dency to consider the social value of the idea—“Will this idea appeal to others?” 
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or “I think this would appeal to lots of people/these types of people”—may have 
positioned participants to package the ideas in ways that would communicate 
subjective opinions to others through more evaluative language (i.e., a strong 
recommendation of the idea).

These data provide evidence to establish a link between the neural mecha-
nisms involved in initial idea evaluation and the (linguistic) manner in which it is 
retransmitted. Our use of automated linguistic tools was designed to lay the 
foundation for moving from the micro-level to the meso-level of person to person 
sharing where language becomes a predominant carrier of information and social 
intent and eventually to more direct connections with larger-scale retransmission. 
Future studies might directly manipulate the psychological processes suggested 
by this initial work (i.e., mentalizing) and observe the extent to which it changes 
later enthusiastic propagation.

Conclusion

Although in early phases of development, the combination of neural and compu-
tational social science tools may allow new connections among multiple levels of 
analysis. The examples presented here are highly suggestive of the potential of 
integrating data representing the neurocognitive processes of individuals engaged 
in laboratory tasks, with analytic methods from computational social science such 
as social network and quantitative linguistic analysis. In our first example, neural 

FIGURE 4
Linking Linguistic Measures with Neural Data in the Context of Message Propagation

SOURCE: Figure originally published in Falk, O’Donnell, and Lieberman (2012).
NOTE: (A) Neural activity associated with higher positivity scores from automatic SA classifi-
cation (p < .005, k = 37). (B) Neural activity associated with higher combined evaluative*positivity 
scores from automatic SA classification (p < .005, k = 37) MPFC = medial prefrontal cortex; 
PC = precuneus; PCC = posterior cingulate cortex; TPJ = temporoparietal junction.
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and egonet data suggest a novel explanation for why certain socially framed mes-
sages may not have achieved the large-scale media effects expected; in turn, this 
highlights a broader theoretical issue regarding interactions between individual 
message recipients and their close social referents. This example also highlights 
that the individuals studied in social neuroscience live surrounded by social struc-
tures that can be quantified using the tools of computational social science, with 
neural activity in key brain systems being moderated by social network variables. 
More broadly, integration of neural and computational social science tools may 
offer a richer picture of how the brain works and could reveal other important 
interactions between neural function and broader social environments. Together, 
these combinations provide contextualization and potential explanations of the 
patterns and association discovered at scale.

Our second example highlights the use of a different tool from the computa-
tional social science toolbox (linguistic analysis) to help link processes that can be 
measured both in controlled laboratory settings and at large scales in the real 
world. As a primary communicative tool, language reflects psychological pro-
cesses experienced by the communicator (Gonzales, Hancock, and Pennebaker 
2010; O’Donnell, Falk, and Lieberman 2015; Pennebaker et al. 2007). Practically, 
it can be collected in controlled laboratory studies, and also makes up a signifi-
cant component of the computational social science/big data record that results 
from individuals interacting and engaging in a social contexts (O’Connor et al. 
2010). Thus, language is an ideal tool to link such levels of analysis. In current 
work, our team is extending the findings described here to more directly link 
neural activity and language expressed at the micro level with larger-scale data on 
selection and retransmission (of news articles).

The examples reviewed here are just initial investigations of potential meth-
odological combinations, and further work is needed to pinpoint the potential as 
well as boundaries and limitations. At a practical level these goals can be achieved 
through strategic partnerships among researchers who traditionally work at dif-
ferent levels of analysis, and through the addition of biological (e.g., neuroimag-
ing) measures to selected subsamples of population level computational social 
science (i.e., larger representative surveys and big data–style scrapping [Falk 
et al. 2013]). In addition, computational social science methods can be applied to 
data collected on individuals within upcoming neuroimaging studies. Beyond the 
benefits for each set of disciplines on their own, collecting such data across levels 
of analysis will also aid in explicitly theorizing about both how observed macro 
processes might be the product of specific neural mechanisms and how different 
neural mechanisms might be moderated by macro-level processes.

Note

1. We wish to emphasize the importance of considering other macro-level social structures and institu-
tions that influence both individuals and populations (e.g., of the type traditionally studied by sociologists 
and that may not consist only of aggregate individual behaviors); however, treatment of these ideas and 
interactions is beyond the scope of this article. In addition, treatment of the vast technology developing to 
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understand meso-level social environments (Swan 2013) is similarly essential to a complete picture of 
social, cognitive, and affective processes, but beyond the scope of this article.
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