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Humans are driven to pursue and preserve social relationships, and these motivations are 

reinforced through biological systems. In particular, individual differences in the tuning of 

biological systems that respond to social threats may motivate individuals to seek out differently 

structured social environments. Drawing on a sample of adolescent males who underwent fMRI 

brain imaging (n = 74) and contributed Facebook data, we examined whether biological 

responses to a common scenario – being excluded from an activity with peers – was associated 

with their network structure. We find that neural responses during social exclusion in a priori 

hypothesized “social pain” regions of the brain (dACC, AI, subACC) are associated with the 

density and transitivity of core friendship networks. These findings suggest that neural reactivity 

to exclusion may be one factor that underlies network “safety”. More broadly, the study shows 

the potential of linking social cognitive tendencies to social structural properties. 
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What psychological factors determine the shape of personal social networks? Over the 

past two decades, researchers have identified a number of personality traits that predict network 

structure in organizational and social life 1–6. Building on this foundation, neuroimaging has the 

capacity to reveal additional factors that underpin social networks by examining individual 

differences in the tuning of brain systems 7. In particular, given that social connectedness is 

reinforced through biological pathways 8, neural sensitivity to social exclusion represents an 

established orientation that may be relevant to personal network structure (and vice versa). Over 

time, those whose brains are especially sensitive to being excluded may come to occupy the 

“safety” of compact, close-knit relational structures with clear expectations – i.e., network 

closure. In parallel, taking part in a close-knit community may also increase the costs and 

salience of potential exclusion. Drawing on implicit neurocognitive reactions collected via fMRI, 

we examine whether individual differences in neural responses during social exclusion are 

associated with egocentric network size (i.e., number of friends) and network closure (i.e., extent 

to which friends within the network are interconnected). 

Neural Responses to Social Exclusion   

 Experimental research has reliably shown that social exclusion damages mood, self-

esteem, and sense of belonging 9. Additionally, neuroscience research has shown that there are 

consistent brain regions that respond to social disconnection 10, including the anterior insula (AI), 

dorsal anterior cingulate cortex (dACC) 11, and subgenual anterior cingulate cortex (subACC) in 

adolescents 12. In addition, these brain regions can also support complementary functions 

relevant to navigating social interactions, such as monitoring for conflict, detecting salient events 

and remaining alert 13–15. Importantly, exclusion is particularly significant during adolescence, 

when peer relationships, and rejection from those peers, become increasingly salient and potent 
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16. Extant research suggests there are links between social cognitive tendencies, brain structure 

and function, and social resources 17–21, but does not account for responses to specific social 

contexts, such as exclusion. As such, this study focuses on adolescents’ responses within a priori 

hypothesized neural regions that reliably increase during exclusion relative to inclusion, as a 

physiological measure of the brain’s sensitivity to social exclusion. See Figure 1. 

Full and Core Friendship Networks on Facebook 

Social network theories are now commonly used to explain outcomes across multiple 

disciplines 22–24, and are increasingly relevant to social cognition and neuroscience research 17,25–

27. Kornienko et al. (2013) state, “Social network analysis provides powerful tools for measuring 

and quantifying an individual’s social ecology by focusing on his or her position in a network” 

(p. 386) 28. Egocentric network (or “ego-network”) analysis thus represents a fundamental way 

of measuring the context surrounding an individual (or “ego”), and such socioecological 

perspectives are increasingly providing new insights into psychology and cognition 25,29. 

 In classic social network studies, researchers often utilized name-generator methods in 

which participants self-report contacts 30,31. With the advent of computer-mediated interaction, a 

prominent subtype of social network is a communication or interaction network 32,33. We report 

on this type of network, using objectively recorded measures from Facebook’s Application 

Programming Interface (API), rather than self-reported ties. Facebook, in particular, occupies a 

central position in adolescent interaction and the site represents a large resource for social 

support and social capital 34–36. We concentrate on Facebook networks because they tend to 

present a similar layered structure as offline networks 37,38. 

 Often, network researchers discriminate between core networks and more peripheral 

networks 39. Full networks on Facebook encompass all individuals with whom the ego is directly 
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connected on the platform 40,41, while core networks contain more proven sources of social 

support. These latter confidants, typically the top 5 to 15 friends of the ego, come with higher 

social expectations –  but also provide security and trust 37,42. Human networks are made up of an 

average of five “supportive” ties and ten “sympathetic” ties, each layer offering unique 

“tradeoffs” 37. For instance, whereas the inner layers may provide emotional support in times of 

need, the outer layers may offer access to novel resources. Our study examines characteristics of 

both full and core networks in relation to individual differences in brain function.  

Network Size and Closure 

 In a Facebook friendship network, network size (or “ego-degree”) is equal to the number 

of accepted “friends” of the participant. By contrast, interactive links between each ego and alter 

afford a more dynamic measure of social relationships. In these cases, the alters who do not meet 

a specific criterion (e.g., amount or type of communication) are removed 33. Here we utilize both 

types in the form of “full” friendship networks and “core” interaction networks. Through the 

complete set of friendships connected to an ego, we acquire an expansive measure of the 

individual’s broad social environment. Alternatively, our core networks provide a discrete 

compass of the individual’s primary environment based on communication logs. For both full 

and core networks, we concentrate on the role of closure, or the extent to which individuals 

within the network are interconnected. More precisely, we test two established metrics that 

signal overall network closure: density and transitivity 41,43. 

Social Exclusion and Network Structure 

Past research suggests neural reactivity to social exclusion is related to individuals’ social 

environments and social support. For example, people who interact with supportive others more 

often show less neural sensitivity to social exclusion 44. Prior research has also observed a 
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negative relationship between social pain responses in the brain and the amount of time spent 

with friends 45. Similarly, people with higher sensitivity to rejection tend to make less friends 

during their freshman year of college 46.  Following similar logic, increased neural reactivity 

within social pain regions should be associated with having fewer social resources, and thus 

smaller network size. In the current study, we build on past work to determine whether neural 

responses to exclusion are also related to objective network size on Facebook.  

The literature is less decided on how exclusion sensitivity, and neural systems in 

particular, may also underlie other network features such as closure. Network closure is 

associated with a higher concentration of close ties and connections between others in the 

network. Independent of differences in size, networks with greater closure are inherently more 

close-knit 47,48. The friends of the ego in a more closed network are more likely to know each 

other and interact with one another routinely. See Figure 2. Closure should contribute to stronger 

norms and enhanced trust 49,50, codifying and clarifying the expectations of group membership. 

For these reasons, an interconnected network represents a certain space with clear signage, thus 

rendering network “safety” 50 – at least when expectations are respected.  

 Following exclusion, individuals feel threatened and socially insecure 51. In response, 

excluded individuals may seek out the “safety” of private areas 52, or reach out to others – but 

only if acceptance seems secure 53–55.  Over time, people who are especially sensitive to social 

threat may “withdraw” into close-knit groups as a form of protection 46, though this process is 

likely to be bidirectional (i.e., people in close-knit groups may also develop greater sensitivity to 

social exclusion) 56,57. For instance, individuals may default to known cliques, in which social 

expectations are clearer and social investments are greater, to minimize the risk of future 

rejection. In practice, so long as individuals maintain good standing, they are less likely to be 
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excluded from trusted coteries. In sum, exclusion sensitivity may be associated with retracting 

into social environments that are perceived as safer, such as close-knit circles exhibiting closure. 

Here we consider whether individual differences in two types of exclusion sensitivity – neural 

reactivity and self-reported threat– are related to closure in Facebook networks. 

Results 

 Our analyses examined the relationship between neural and self-reported responses to 

social exclusion and (1) full network size and closure, and (2) core network closure in a sample 

of adolescent males. The summary statistics for the primary study variables are presented in 

Table 1, and the bivariate correlations between them are displayed in Table 2. Full network size 

is equal to the total count of Facebook friends. We set the size of core networks to be the same 

across all participants (i.e., top 5 and top 15 friends). We then considered two forms of closure 

within each network: density and transitivity. Network density is equal to the proportion of 

actual friend connections out of all possible links among people included in the ego network. 

Network transitivity is equal to the proportion of completed triangles out of all possible triads, or 

cases in which Friend A knows Friend B and Friend B knows Friend C.  

 In our data, two friends are connected if they are friends with each other on Facebook 

independent of the participant (“ego”). Thus, in a hypothetical network of five friends, the ego 

would have a maximally dense network if all five friends know each other, but a minimally 

dense network if none of them are friends on Facebook. Similarly, transitivity focuses solely on 

triads in their friends’ network: sets of three friends in which at least one knows the other two. 

Therefore, a fully transitive network would mean that each triad is a triangle; that is, among 

possible triads, the three friends always know one another. Since the ego was automatically 

connected to all other nodes in the network (by virtue of being friends), networks including the 
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ego have the potential to exaggerate structural measures of interconnectedness. For this reason, 

density and transitivity were calculated with ego (and its edges) removed from the network. 

Correlates of Full Network Structure 

  The full network measures were computed from the complete friend list collected via the 

Facebook API. Ordinary least squares regression was used to test all of our models. In the size 

models, full network size was entered as the outcome variable. In the closure models, full 

network density and transitivity were evaluated as separate outcome variables.    

 Full Network Size. We first examined whether there was a relationship between brain 

responses to exclusion > inclusion and full network size, controlling for whether the participant 

came from sample wave one or two (see methods), as well as overall number of Facebook 

interactions of the individual. Neural sensitivity to exclusion was not significantly related to full 

network size, [b = 0.10, t(70) = 0.89, p > 0.37]. We next tested whether self-reported distress, 

i.e., reduced need satisfaction, was associated with full network size, once again controlling for 

sample wave and the number of Facebook interactions. Self-reported distress was also unrelated 

to network size, [b = -0.11, t(70) = −0.97, p > 0.33]. Finally, a combined model with both neural 

and self-report predictors entered simultaneously confirmed that neither self-reported need 

satisfaction nor neural responses were associated with full network size on Facebook. See Table 

3 for complete results of the combined model. 

 Full Network Closure. We then specified separate models to test the relationship between 

brain responses to exclusion > inclusion and (a) full network density and (b) full network 

transitivity, controlling for whether the participant came from sample wave one or, number of 

Facebook interactions, and full network size. Neural responses to exclusion were not 

significantly related to full network density, [b = 0.06, t(69) = 0.56, p > 0.57], or transitivity, [b 
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= 0.11, t(69) = 1.04, p > 0.30], in their respective models. In turn, we then specified models to 

examine whether self-reported distress was associated with full network closure, once again 

controlling for sample wave and the number of Facebook interactions. Self-reported distress was 

marginally correlated with full network density, [b = -0.22, t(69) = −1.98, p < 0.052], and 

positively related to transitivity, [b = -0.28, t(69) = −2.68, p < 0.01]. Finally, we confirmed that 

the same pattern of results held in a model that included both neural and self-reported responses 

to exclusion (see Table 3 for full results of the combined model). 

 Last, we explored the possibility that network size might moderate the relationship 

between responses to exclusion and full network closure. Network size, neural responses to 

exclusion, and self-reported distress variables were centered and scaled for each of the models 

containing interaction terms. Full network size moderated the relationship between neural 

responses to exclusion and full network density, [b = -0.17, t(67) = −2.60, p < 0.02], but not 

transitivity, [b = -0.09, t(67) = −1.34, p > 0.18]. Network size also moderated the relationship 

between self-reported distress and full network transitivity, [b = 0.17, t(67) = 3.02, p < 0.004], 

but not density, [b = 0.11, t(67) = 1.76, p > 0.08]. For both neural and self-report measures, 

simple slopes analysis (+/- 1 SD) revealed that greater reactivity to social exclusion was 

associated with increased closure among participants with smaller networks (i.e., neural with 

density, B = 0.06, t(67) = 2.49, p < 0.02; self-report with transitivity, B = -0.05, t(67) = −4.03, p 

< 0.001); however, among those with larger networks, increased reactivity to social exclusion 

was not significantly related to closure (neural with density, B = -0.02, t(67) = −1.44, p > 0.15; 

self-report with transitivity, B = 0.02, t(67) = 1.09, p > 0.28). All coefficients reported from the 

simple slopes analyses correspond to unstandardized coefficients.  

Correlates of Core Network Structure  
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 We utilized the Facebook wall data to create more refined networks with participants’ top 

friends over the prior year (i.e., “core networks”). This allowed us to identify the most important 

friends independently from how much the participant used Facebook, as well as to directly 

investigate the attributes of participants’ core networks. In line with past research on core 

networks 37,39, we focused on the top five and top fifteen friends, as defined in this case by the 

number of unique interactions on participants’ walls. In doing so, this allowed us to test how 

different structural features, including density and transitivity, operated at more central network 

layers while holding network size constant. Similar to past examinations of communication 

networks 58, and Facebook in particular 38, we observed that the top friends represented a large 

share of the overall interactions for each participant. Once again, network density and transitivity 

were evaluated in separate models as DVs.    

 Top-15 Closure. We first assessed whether there was a relationship between brain 

responses to exclusion > inclusion and closure among the Top-15 friends of the ego, controlling 

for sample wave, total interactions, full network size, and Top-15 interactions. We found that 

increased neural reactivity to exclusion (vs. inclusion) was associated with greater core network 

density, [b = 0.32, t(68) = 2.86, p < 0.006], as well as transitivity, [b = 0.36, t(68) = 3.22, p < 

0.002], among the top 15 friends. Next, we specified models to examine whether self-reported 

distress following exclusion was associated with density among the top 15 friends, once again 

controlling for sample wave, total interactions, full network size, and Top-15 interactions. Self-

reported distress was not significantly related to either core network density, [b = 0.03, t(68) = 

0.25, p > 0.80], or transitivity, [b = -0.02, t(68) = -0.19, p > 0.85]. Finally, we confirmed that the 

results were parallel in combined models that included both the neural and self-reported 

responses to exclusion. These models showed that neural responses to exclusion – but not self-
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reported distress – was positively associated with Top-15 network density and transitivity. See 

Tables 4 and 5 for complete information on the combined models.  

 Top-5 Closure. We also examined the relationship between brain responses to exclusion 

> inclusion and closure among the top 5 friends of the ego, controlling for sample wave, total 

Facebook interactions, full network size, and Top-5 interactions. Similar to the Top-15 models, 

we found that neural reactivity was related to increased network density, [b = 0.29, t(68) = 2.59, 

p < 0.02], and transitivity, [b = 0.34, t(68) = 3.14, p < 0.003], among the top 5 friends in separate 

models. Also paralleling the Top-15 models, self-reported distress was unrelated to core network 

density, [b = -0.12, t(68) = -1.02, p > 0.31], and transitivity, [b = 0.00, t(68) = 0.00, p > 0.99], 

with sample wave, total interactions, full network size, and Top-5 interactions entered as 

covariates. Likewise, as displayed in Tables 4 and 5, we observed parallel relationships in our 

combined models that included both neural responses and self-reported distress. 

 Robustness check. Due to moderate non-normality in our measures of core network 

closure, we also conducted rank regression versions of the combined models (see Supplementary 

Materials). These added models offered convergent evidence with the OLS models.  

 Whole brain searches. We also examined whether regions outside of our a priori 

hypothesized regions of interest were associated with our key social network variables. 

Consistent with our a priori hypotheses, activity in dACC was associated with the density and 

transitivity of the Top-15 networks (see Supplemental Materials). Additional activity was 

observed in parts of lateral prefrontal and parietal cortices for density and transitivity of the Top-

15 networks across thresholding strategies, with more widespread activations under less 

conservative thresholding strategies. Activity in insula, as well as additional portions of pre-

frontal cortex and temporal cortex were associated with Top-5 Transitivity. No regions survived 
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multiple comparisons correction at the whole brain level for models linking brain activity to the 

density of the full networks or Top-5 networks, or transitivity of the full networks. 

Discussion 

 In this investigation, self-reported sensitivity to exclusion was associated with full 

network closure. Neural responses were associated with closure at the core network level, such 

that adolescents who showed stronger responses during exclusion exhibited higher closure 

among their top friends. In other words, greater self-reported and neural sensitivity to exclusion 

is related to interacting with more close-knit circles. Moreover, we also observed that responses 

to exclusion were associated with full network closure – but only for those with smaller 

Facebook networks. Combined, the results strengthen the notion that individuals with elevated 

exclusion sensitivity may gravitate to more close-knit, and thus “safer”, social environments. By 

surrounding oneself with a tightly woven set of friends with known expectations, one may 

minimize the risk of being isolated during daily life. Concurrently, being embedded in close-knit 

network structures may heighten sensitivity to signals of being excluded, since the costs of 

exclusion may multiply when friends know one another.  

Our results linking self-reported distress following exclusion to full network closure add 

to a growing body of work linking exclusion to social network features. For example, freshman 

students who were higher in rejection sensitivity ended the school year with a less diverse set of 

friends 46. Nonetheless, a variety of different mechanisms may contribute to these links, such as 

in-group favoritism or exaggerated preference for homogeneity. In turn, future work should 

strive to measure network preferences in combination with sensitivity to exclusion. Our findings 

also expand upon recent fMRI research, which has started to examine the links between 

neurocognition and social network characteristics, including size and other network dimensions 
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that are germane to closure (e.g., brokerage, diversity). For example, the diversity of a person’s 

social roles in a social network is positively correlated with white matter integrity 20. Also, more 

popular people are more sensitive to others’ social network popularity (measured within the 

brain’s valuation system including vmPFC, ventral striatum, and amygdala) – and better at 

detecting others’ actual popularity 27. Hence, our study affirms the relevance of social cognitive 

differences for network structure beyond size, along with the potential for network dimensions to 

moderate core cognitive processes 25,26. 

The conditional relationship between exclusion sensitivity, network size, and network 

closure complements prior work suggesting that people may hold several socioemotional 

motives for network engagement at the same time. For example, two competing individual 

motivations – “safety” vs. “efficacy” – are theorized to influence personal network structure 50,59. 

Accordingly, individuals are motivated to both (1) reinforce their most trusted circles and (2) 

seek out new leverage positions in an entrepreneurial fashion. Whereas efficacy is tied to 

network brokerage and decreased closure, the safety motivation is tied to increased closure, 

including greater density and transitivity 50. In turn, individuals are driven to pursue both 

network structures – but toward different ends. In the current case, we show that those who show 

the greatest self-report and neural responses to exclusion may tend to retreat to more closed 

groups with well-defined norms, and this proclivity may shape their social networks over time. 

We thereby bolster the idea that reactivity to social threat may underlie ego-networks tuned 

toward “safety”, particularly for those with smaller overall networks.  

Within the brain, we also observed robust relationships with core network structure. Past 

research demonstrates that dACC 11, AI 60, and subACC 12 reliably increase during social 

exclusion compared to inclusion. Our results suggest that individual differences in sensitivity 
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within these regions are also associated with core social network structures that people inhabit. 

Results from our whole brain search suggest particularly robust involvement of the dACC. 

Indeed, among the three a priori defined ROIs, the dACC exhibited the strongest relationship to 

core network closure in three out of four models. From a cognitive perspective, the core regions 

of interest associated with the effects we observe, and dACC in particular, is implicated in 

conflict monitoring 61, as well as other mental processes such as salience detection 15, tonic 

alertness 14, task-set maintenance 62, anxiety, and distress that together suggest an alarm-like 

function 13,63. In other words, given that social exclusion is costly in an evolutionary context 10, 

as well as a modern context (e.g., “fear of missing out”) 64, brain activity that detects potential 

conflicts, monitors for salient threats, and more generally responds to social distress, is thought 

to keep individuals motivated to stay connected to their groups. Our data highlight that 

individual differences in brain responses within this system may shape and be shaped by the 

types of social networks people occupy. For those who respond more strongly to negative cues 

from others, it may be safer to uphold membership in a close-knit group (vs. discrete friends).  

  By contrast, we found no evidence that the number of friends in an online social network 

on its own, i.e., objectively-logged larger networks, is associated with either self-reported or 

neural responses to social exclusion. It is possible that reactivity to exclusion is associated with 

different preferences for the quality, rather than quantity, of relationships. In particular, previous 

research focusing on offline support and raw time spent with friends demonstrates the power of 

social activity to buffer reactivity to exclusion 44,45. Although these findings appear contradictory 

on the surface, objectively logged measures of Facebook network size likely tap into different 

qualities than time spent with friends offline. In addition, the study of time spent with friends 

examined friendships two years prior as a predictor of neural reactivity to exclusion, whereas our 
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study examined aggregate network structure over a yearlong period. It is also worth noting that 

different social context factors (e.g., time spent with different friends vs. group membership with 

strong norms) may be associated with different neural responses to exclusion. As such, future 

research should aim to triangulate measures of social network characteristics, including deeper 

investigations into temporal dynamics, subjective vs. objective assessment of network properties, 

and the quality vs. quantity of relationships. Triangulation may also help reconcile our findings 

with studies that observed links between self-reported network size or resources and 

neuroimaging measures, including the studies referenced above linking neural reactivity to 

exclusion and time spent with friends 45, as well as other studies linking grey matter volume of 

social cognitive regions and greater functional connectivity between the amygdala and cortical 

regions associated with social perception and affiliation 17,65.  Finally, as noted above, we 

observed that network size moderates the relationship between both self-report and neural 

responses to exclusion and network closure. As such, our findings highlight the importance of 

considering the structure and function of social networks in combination with size.  

In parallel, our results highlight the potential to identify discrete roles of core networks 

and full networks. For our sample of adolescents, the networks made up of top friends (vs. total 

friends) were more strongly related to neural responses during exclusion (vs. inclusion). This is 

consistent with other research showing that the number of “actual friends” on Facebook, as 

opposed to total friends, can be predictive of social outcomes 66. By contrast, the closure of full 

networks was most strongly associated with self-reported distress following the exclusion 

episode. Post-hoc analyses also offered some insight about where the processes may overlap. 

Specifically, we found evidence that network size may moderate the relationship between 

exclusion reactivity measured both during exclusion with fMRI and after exclusion with self-
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report, and full network closure. For individuals with smaller full Facebook networks, the 

relationship between both measures of reactivity to exclusion and full network closure matched 

that of the relationship between neural reactivity and core network closure. This qualified 

relationship between exclusion sensitivity and network closure indicates the need for more 

nuanced perspectives, particularly when explaining the structure of peripheral layers. The finding 

is also an important reminder that large-scale online networks reflect numerous and 

heterogeneous factors, ranging from the number of places a person has lived to their motivations 

for friending or following others. In line with prior theoretical approaches 67, we also argue that 

personality inclinations can have separate effects on the structural features across different types 

of personal networks. By testing full and core networks side-by-side, we affirm that outer and 

inner circles can have distinct correlates with key individual differences. 

More broadly, our findings strengthen calls for network measures to be incorporated into 

studies of psychological and cognitive science 7,49,68, as well as for greater links between 

sociological and cognitive neuroscience perspectives 69,70. Indeed, our data add another layer of 

nuance to prior network research evaluating the “social brain” hypothesis, or the idea that brain 

processing has evolved to keep track of complicated social worlds 18,21. Thus far, the majority of 

research linking social network measures and psychological tendencies has measured individual 

characteristics with self-report methods 3,68. The separate relationships observed for the two 

measures of responses to exclusion (fMRI and self-report NTS scale) affirms the usefulness of 

combining self-report and neural methods in the study of social interaction, as fMRI can capture 

experiences that may complement self-report, and visa-versa 71. Specifically, the implicit neural 

measures were reliably related to core network closure, while the self-reported distress was 

associated more robustly with full network closure. Despite the two measures providing 



 17 

generally parallel implications – reactivity to social exclusion being associated with network 

closure – future work should attempt to clarify whether discrete mechanisms exist.  

Of course, the limitations of the current dataset and correlational analyses provide 

important avenues for future research to consider. For example, we focused on adolescent, male 

Facebook users who volunteered information about their profiles. Although most participants 

chose to contribute their digital trace data, it is possible that this self-selection process biases our 

sample. It is also possible that the individual differences in network features are indexing a 

hidden variable unintentionally (e.g., user motivations, life changes, geographical shifts, etc.), or 

that different results would be observed using other samples 72. Additionally, it is possible that 

our logged collection of interactions unintentionally captures some individuals who are more or 

less meaningful to the ego’s core friendship network (e.g., family members). For these reasons, 

future research should evaluate whether other types of networks (e.g., Face-to-Face, Calling, 

Twitter) relate to in vivo cognitive tendencies, and whether our results here maintain over time 

and generalize to other populations. Last, the results should be interpreted with the usual caution 

regarding reverse inference in neuroimaging research 73, given that multiple functions underlie 

our brain regions of interest and hence the psychological interpretation of the brain reactivity is 

open to different interpretations 74–76.  

 Our theoretical framework linking exclusion sensitivity to network structure reflects past 

research on social networks, which have generally treated personality factors as predictors of 

network structure 3. Nonetheless, in addition to individuals shaping their social environments, 

social environments also affect individuals, and our data cannot untangle the directionality of 

these complex socio-psychological processes. In other words, there are likely bidirectional 

relationships between life experiences, network properties, and brain responses. For example, 
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being part of a dense community may translate into greater sanctions for negative behavior from 

the group 77,78. Those who are part of such networks may be more vigilant to potential rejection 

since the consequences may be greater. Future research is thus needed to establish causality – the 

extent to which more reactive individuals embed themselves in closed networks, the extent to 

which interacting with a closed network sensitizes individuals, and the extent to which the two 

directions mutually reinforce one another. Moreover, some dense networks may actually serve to 

buffer individual responses to social exclusion; recent work suggests that the relationship 

between density and well-being depends on the level of self-affirmation 79. A self-affirming 

dense network increases self-efficacy and self-esteem, whereas a disaffirming dense environment 

can undermine well-being. In all likelihood, these relationships with ego-network structure are 

reciprocal and conditional 57,80. 

 In total, we found that adolescents who reacted more intensely to exclusion (via fMRI) 

tended to have denser core friendship networks, but did not differ in the number of friendship 

connections within their networks. Self-reported reactions to exclusion were also positively 

associated with more closed full friendship networks on Facebook – but only for those with 

smaller networks. Experiencing stronger reactivity to social exclusion may lead individuals to 

seek out the certainty of an interconnected group, rather than the uncertainty of disconnected 

friendships, and visa-versa. Our findings thus suggest that exclusion sensitivity is related to the 

structure, rather than the sum, of interaction partners. As such, this study extends our 

understanding of the social cognitive correlates of network structure. Further, our findings 

underscore the promise of combining neuroimaging with network science to connect social 

cognitive processes and social network properties. Just as the social network literature has linked 
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structural features to a broad range of informational, organizational, and health outcomes, we are 

now poised to make stronger links to personal cognition. 

Methods 

Participants  

 Participants were recruited from a list of recently licensed teenage drivers provided by 

the Secretary of State in Michigan, U.S.A., as part of a larger study examining adolescent male 

driving behavior and susceptibility to peer influence 81,82. As such, the sample was homogenous 

with regard to age (all participants ranged were between 16 and 17), gender (male), and race 

(White). Participants were collected in two groups during 2012 (n = 35; M = 16.9 years, SD = 

0.47 years) and 2013 (n = 70; M = 16.9, SD = .30) a year later. Post-hoc analyses confirmed the 

two participant waves did not differ significantly on demographics or neural response to 

exclusion and are combined for the purpose of this investigation (see Supplemental Materials). 

Additionally, all regression models included a covariate for sample wave to account for 

differences between the waves. In addition to completing an fMRI session, a subsample of 74 

participants also provided logged Facebook network data. Two participants were found to have 

missing portions of their imaging data, so they were removed from all analyses. The remaining 

participants from the larger neuroimaging sample (n = 29) either chose not to contribute data 

from their Facebook profiles when asked to do so voluntarily or experienced technical problems 

that undermined logged data collection. Participants met standard fMRI and driving simulator 

inclusion criteria, such that all participants were right-handed, did not suffer from 

claustrophobia, were not currently taking any psychoactive medications, had normal (or 

corrected to normal) vision, did not have metal in their body that was contraindicated for fMRI, 

and did not typically experience motion sickness.  
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Procedures 

 All study procedures were approved by the University of Michigan IRB and performed in 

accordance with relevant guidelines and regulations. Informed consent was obtained for all 

participants. Specifically, the teenage participants and their parents gave verbal and written 

assent/consent, respectively, before beginning the study. All data collection for the current report 

was completed during one appointment. All participants completed Cyberball 83, a game in 

which they are socially excluded, during an fMRI session, as well as a post-scan self-report 

measure of distress (Need Threat Scale; NTS)84 in response to the exclusion task. Participants 

were later asked to provide access to their logged Facebook network data. 

 fMRI Session. Participants played the computerized game “Cyberball” while we 

monitored neural activity throughout the brain using fMRI. This manipulation has been shown to 

produce negative feelings associated with ostracism in many replications 85 (see Supplemental 

Materials). Parallel analyses drawing on this data set have investigated changes in neural 

connectivity during exclusion and inclusion in relation to full network density 86; however, no 

prior reports have examined average changes in brain activation nor core network properties. 

 Self-Reported Distress Following Exclusion. The Need Threat Scale (NTS) was 

administered after the participants exited the fMRI scanner in order to evaluate self-perceptions 

of the social exclusion scenario. Responses were assessed on a 7-point scale ranging from 1 

(strongly disagree) to 7 (strongly agree). Participants answered 20 questions (e.g., I think that my 

participation in the game was useful, I had the idea that I had the same value as the other 

players, and I had the feeling that I belonged to the group during the game). Higher scores on the 

NTS indicate greater need satisfaction, or less self-reported distress following the manipulation. 
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We averaged each sub-scale in line with previous work and tested the reliability across the four 

dimensions, confirming that the full scale had good reliability (Cronbach’s α = 0.89).  

 Facebook Data. After completing the fMRI session, each participant was asked whether 

he had a Facebook account. If so, he was asked whether he would be willing to contribute data 

from his personal wall feed to the study using an app that automatically logs historical data from 

the participant’s profile. See Supplemental Materials.  

 fMRI data acquisition. Imaging data were acquired using a 3 Tesla GE Signa MRI 

scanner. One functional run was recorded for each participant (251 volumes). Functional images 

were recorded using a reverse spiral sequence (TR = 2000ms, TE = 30ms, flip angle = 90°, 43 

axial slices, FOV = 220mm, 3mm thick; voxel size = 3.44 x 3.44 x 3.0mm). A set of high 

resolution in plane structural images was recorded (43 slices; slice thickness = 3mm; voxel size = 

.86 x .86 .3.0mm) to facilitate co-registration and normalization. In addition, a set of high-

resolution structural T1-weighted anatomical SPGR images was acquired (124 slices; slice 

thickness = 1mm; voxel size = 1.02 x 1.02 x 1.2mm). Behavioral responses (i.e., Cyberball 

throws) were executed using a scanner compatible five-finger glove. 

Data Analysis 

fMRI preprocessing and modeling. Functional data were pre-processed and analyzed 

using Statistical Parametric Mapping (SPM8, Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London, UK) according to standard pre-processing stream (see 

Supplemental Materials). Data were modeled for each subject using the general linear model as 

implemented in SPM8. Three trial phases were modeled with one regressor each: social inclusion 

(89 TRs, 178 seconds), social exclusion (89 TRs, 178 seconds). These phases were each modeled 

as single blocks and convolved with the synthetic hemodynamic response as provided by SPM. 
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The six rigid-body translation and rotation parameters derived from spatial realignment were also 

included as nuisance regressors. Data were high-pass filtered with a cutoff of 128 s. 

 Social Pain Regions of Interest. We focused on a priori hypothesized regions of the brain 

that have been previously associated with distress during exclusion: dACC, anterior insula, and 

subACC 87,88. See Supplemental Materials for anatomical definitions. Percent signal change 

scores were extracted from the contrast exclusion > inclusion for the ‘social pain’ ROI as a 

whole for our regression models, as well as the individual ROIs (see Table 2).  

 Interaction Measures. Separate measures were computed in order to account for 

individual differences in Facebook use as well as to identify “Top Friends” according to the 

degree of Facebook activity. Total Interactions, which is controlled for in all models, represents 

the complete number of interactions (mentions, comments, likes, etc.) with all friends of each 

participant (M = 858.68, SD = 991.23, Min = 18, Max = 4856). By contrast, Core Interactions 

represents the proportion of total interactions occurring with the friends in participants’ Top-5 

(M = 0.20, SD = 0.10) or Top-15 (M = 0.38, SD = 0.16) friend networks. In core network models, 

we thus included covariates for both complete and core network interaction levels.  

 Network Measures. The logged Facebook data, including data about participants’ 

Facebook friends and friends-of-friends, was used to create the ego-network measures (size, 

density, transitivity). Full network size reflected the number of discrete nodes connected to the 

ego, or n. Density is equal to the proportion of connected nodes out of total possible links, or d = 

2m/(n*n-1), where m denotes the number of edges and n denotes the number of nodes. 

Transitivity is equal to the proportion of closed triangles in cases when two links share a vertex, 

or t = 3*q/r, where q denotes the number of close triplets and r denotes the number of triads (two 

edges with a shared vertex). 
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 Testing Hypotheses. Ordinary least squares (OLS) regression models were run in R to test 

our hypotheses. Due to moderate non-normality in some of the core network variables, we also 

ran each model as a rank regression to confirm the findings were robust. Network analyses for 

density and transitivity were conducted using NetworkX in Python. Rank regression models 

were run using the Rfit package in R (Supplementary Materials). Our primary full model was 

specified as Y = β0 + β1W + β2F + β3S + β4D + β5N + [βiMi] + e, in which Y denotes the network 

structural outcome, W denotes the wave of data collection, F denotes the amount of participant 

interactions on Facebook, S denotes the size of participant networks, D denotes the self-reported 

distress following exclusion, N denotes neural responses to exclusion > inclusion, and Mi denotes 

models specific terms outlined below (i.e., Full Network Size in closure models, and Core 

Interactions in core network models). We also confirmed that the results for our primary 

predictors of interest (self-report and neural responses to exclusion) were similar when included 

in separate models: Y = β0 + β1W + β2F + β3S + β4D + [βiMi] + e and Y = β0 + β1W + β2F + β3S 

+ β5N + [βiMi] + e.  As such, all regression models controlled for Sample Wave (1 or 2) to 

account for potential confounds in data source and Total Interactions to account for individual 

differences in Facebook use. Additionally, all closure models controlled for Full Network Size 

and all core network models controlled for Core Interactions, as specified above.  

 Exploratory Whole Brain Analyses. We also conducted a set of exploratory whole brain 

models to determine if additional neural processes associated with exclusion were related to 

network size and closure that extended beyond our hypothesized ROI analyses. These additional 

analyses independently regressed each focal social network variable above onto the contrast 

(exclusion > inclusion) during the Cyberball task. Whole brain analyses were reported for 

clusters that were significant using cluster correction at p<.001, k=79, together corresponding to 
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p<.05, corrected for FWE based on parameters derived from 3dClustSim, using smoothness 

parameters (16 to 18.5 mm) estimated from the residuals of each statistical map (updated, July 

2016). In addition, whole brain analyses were also examined using the default FDR threshold 

implementation in SPM8, with a threshold of pFDR<.05 (K>20), corrected. This threshold 

combination balances concerns about type I error 89,90 and concerns about type II error. See 

Supplementary Materials for additional details and results. 
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Figure 1. Neural regions of interest (AI, dACC, and subACC).  
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Figure 2. Example core networks of three participants with low, medium, and high network 

closure, as indexed by network density and transitivity. Two types of core networks were 

computed pertaining to the the five most frequent (top level) and fifteen most frequent (bottom 

level) interaction partners over the previous year. The network graphs are colored to differentiate 

friends with fewer mutual ties (red) from those with more mutual ties (blue). 
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