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Abstract 
Most humans have the good fortune to live their lives embedded in richly structured social groups. 
Yet, it remains unclear how humans acquire knowledge about these social structures to 
successfully navigate social relationships. Here we address this knowledge gap with an 
interdisciplinary neuroimaging study drawing on recent advances in network science and statistical 
learning. Specifically, we collected BOLD MRI data while participants learned the community 
structure of both social and non-social networks, in order to examine whether the learning of these 
two types of networks was differentially associated with functional brain network topology. We 
found that participants learned the community structure of the networks, as evidenced by a slower 
reaction time when a trial moved between communities than when a trial moved within a 
community. Learning the community structure of social networks was also characterized by 
significantly greater functional connectivity of the hippocampus and temporoparietal junction 
when transitioning between communities than when transitioning within a community. 
Furthermore, temporoparietal regions of the default mode were more strongly connected to 
hippocampus, somatomotor, and visual regions for social networks than for non-social networks. 
Collectively, our results identify neurophysiological underpinnings of social versus non-social 
network learning, extending our knowledge about the impact of social context on learning 
processes. More broadly, this work offers an empirical approach to study the learning of social 
network structures, which could be fruitfully extended to other participant populations, various 
graph architectures, and a diversity of social contexts in future studies. 
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1. Introduction 
 
A defining feature of modern social life is the agency that individuals have in constructing 

their own social environment (Rainie and Wellman, 2012). People may change jobs every few 
years (Labor, 2017), attend college far from home (Niche, 2014; Strayer, 2016), move cities for 
work and relationships (Bureau, 2018), and use social media to join clubs and interest groups 
(Lenhart et al., 2015). In order to navigate these novel social environments, individuals must learn 
about the complex web of social relationships and cliques that characterize each new social 
context. For example, integration into friendship networks in the first year of college predicts 
future success (Stadtfeld et al., 2019) and more diverse social networks in immigrants predict 
better psychological well-being and cultural adjustment (Repke and Benet-Martínez, 2018). 
Understanding how people learn relational information about social networks, including which 
individuals each person is friends with and which communities each person belongs to, may 
provide key insights into how individuals adapt to novel social contexts.  

Efforts to probe the learning of social relations and their complex architectures have 
traditionally been stymied by the lack of a formal approach for the study of network learning in 
general. Yet recent advances have met this challenge by conceptualizing relational information as 
a network in which nodes represent objects or concepts, and in which edges represent shared 
content or conditional probabilities (Halford et al., 2010; Karuza et al., 2016). Using tasks that are 
constructed based on this formal graphical conceptualization, evidence suggests that people 
learning non-social information are sensitive to the individual edges in a relational network of that 
non-social information. Perhaps even more strikingly, humans learners are also sensitive to the 
network’s meso-scale structure, which can take on many forms including compositions of clusters 
or communities (Kahn, Karuza, Vettel, & Bassett, 2018; Schapiro et al., 2013). Importantly, some 
evidence suggests that such meso-scale structure facilitates more efficient information processing 
(Fine, Jaeger, Farmer, & Qian, 2013; Karuza, Farmer, Smith, Fine, & Jaeger, 2014; Turk-Browne, 
Scholl, Johnson, & Chun, 2010). For example, the degree to which words are clustered together 
into communities is associated with how easily a particular word is learned (Goldstein & Vitevitch, 
2014). Moreover, individuals that perform a basic perceptual learning task tend to process stimuli 
more slowly if the stimuli lie in different communities (Karuza et al., 2017; Schapiro et al., 2013). 
Yet, while there is extensive literature on how people learn relational information and update 
mental representations of language (Goldstein & Vitevitch, 2014; Karuza et al., 2013; Lieberman, 
Chang, Chiao, Bookheimer, & Knowlton, 2004), motor sequences (Hung et al., 2018; Kahn et al., 
2018; Robertson, 2007), and temporal associations of visual patterns (Fiser & Aslin, 2002, 2005; 
Garvert, Dolan, & Behrens, 2017; Karuza et al., 2017; Schapiro et al., 2013), little is known about 
the cognitive and neural processes supporting the learning of relational information in social 
networks. 

To address this gap, we apply graph theory to directly compare functional brain network 
architecture supporting learning social network structure versus non-social network structure. We 
designed a novel social network learning task in which social images comprised the nodes of a 
modular graph, and in which relations among social images are encoded as edges linking the nodes 
(Tompson et al., 2018). During the task, participants were exposed to a continuous stream of social 
images defined by a random walk on the graph, thereby holding the transition probabilities implicit 
in the graph constant (Fiser and Aslin, 2005; Turk-Browne et al., 2005). To evaluate the specificity 
of our results, we compared our main findings to those obtained during the learning of relational 
information in non-social networks. For the social portion of the experiment, participants were told 



that each image in a set of visual stimuli represented a person, whereas for the non-social control 
portion of the experiment, participants were told that each image in an equivalent set of visual 
stimuli represented a rock formation. Importantly, images for the social and non-social task were 
randomly assigned to each condition for each participant, and thus the only difference between the 
two tasks was the meaning ascribed to the stimuli. 

The task was performed in an MRI scanner during continuous acquisition of BOLD signal. 
To ensure sensitivity to distributed processing and coordination across brain regions and systems, 
we capitalized on recently developed tools in the field of network neuroscience (Bassett and 
Sporns, 2017) to characterize the brain networks supporting the learning of relational information 
about social networks. Specifically, we identified cortical and subcortical areas that displayed 
strong connectivity to the rest of the brain; in the parlance of network science, these areas are 
referred to as hubs, and are thought to be central to coordinating communication between different 
brain systems and to integrating information from different systems (van den Heuvel and Sporns, 
2013). We used whole-brain psychophysiological interaction (WB-PPI; Gerchen et al., 2014; see 
Figure 1) to assess changes in brain networks during the task and to identify the hubs and cognitive 
systems that are involved in social network learning versus non-social network learning. 
Generally, we hypothesized that the manner in which people learn relational information about 
social networks, including which communities individuals belong to, should share some 
overlapping processing and mechanisms with how people learn information about other types of 
statistical relationships. Specifically, we hypothesized that brain regions involved in general 
memory processes such as the hippocampus (Eichenbaum, 2000; Kernbach et al., 2018) should 
operate as hubs supporting both social and non-social network learning. The reasoning behind our 
hypothesis is that the hippocampus is important for encoding relational knowledge in a variety of 
domains (Garvert et al., 2017; Gheysen et al., 2010; Javadi et al., 2017; Long et al., 2018; Schapiro 
et al., 2016, 2014). We also hypothesized that individual differences in hippocampal connectivity 
would be associated with individual differences in learning for both the social task and the non-
social control task. 

Notably, the network of hubs supporting social network learning may reconfigure relative 
to non-social network learning, in which case one would expect that social brain areas would 
operate as hubs for the social condition but not for the non-social control condition. In line with 
this reasoning, we hypothesized that brain regions involved in social processing such as the 
amygdala, dorsal medial prefrontal cortex (dmPFC), and temporoparietal junction (TPJ; Adolphs, 
2009; Lieberman, 2007; Tso et al., 2018) should operate as hubs preferentially supporting social 
network learning. Our reasoning is based on the fact that temporoparietal regions including TPJ 
operate as hubs supporting social perception (Lahnakoski et al., 2012) and integrate sensory 
information with information about the broader social context to support decision-making (Carter 
et al., 2012; Carter and Huettel, 2013). We further expected that the strength of the connections 
between hubs would differ for social network learning and non-social network learning, such that 
hippocampus is more strongly connected to social hubs during the social network learning task, 
and more strongly connected to non-social hubs during the non-social network learning task. 
Finally, we hypothesized that individual differences in network learning would be associated with 
individual differences in functional brain network architecture, and that this relationship would be 
moderated by social context. Individuals who recruit social brain regions more should display 
enhanced performance in the social network learning task but no change in performance in the 
non-social control task.  
 



2. Methods 
 
2.1 Ethics statement  
  

Thirty-two participants (12 male and 20 female) were recruited from the general population 
of Philadelphia, Pennsylvania USA. All participants gave written informed consent and the 
Institutional Review Board at the University of Pennsylvania approved the procedure.  
 
2.2. Description of participants 

 
All participants were between the ages of 18 and 65 years (M=25.20, SD=9.66), were right-

handed, and met standard MRI safety criteria. Two participants opted out of the study during the 
scanning session due to claustrophobia, two additional participants were excluded due to an 
average accuracy below 50%, and two participants were excluded due to artifact that resulted in 
large signal dropout in the parietal lobe. 
 
2.3 Procedure 

 
While their brain activation was measured in an MRI scanner, participants completed a 

social network learning task and a non-social control task. The structure of the experiment was 
identical to Study 5 in Tompson et al. (2018). The order of the two tasks was counterbalanced 
across participants. In each task, participants viewed a sequence of fractal images that we created 
using the Qbist filter in the GNU Image Manipulation program (v.2.8.14; www.gimp.org), 
converted to grayscale, and then matched for average brightness. Images were presented for 1500 
ms. To ensure that participants were attending to the stream of images, they were instructed to 
press the J key with their right index finger if the image was rotated (30% of trials) and to press 
the F key with their left index finger if the image was not rotated (70% of trials). Each task was 
broken into 5 runs and participants were given a break between runs to reduce fatigue. 

Each image was unique, and for each participant, each image was randomly assigned to a 
network node in either the social or non-social condition. The sequence of fractal images that each 
participant saw for each task was generated by a random walk through the network (see Figure 
1A). This random walk ensured that the probability of one image being presented after the current 
trial was equivalent across trials and determined by the network structure. Each node was 
connected to exactly four other nodes, ensuring that all transition probabilities were equivalent. 
The structure of transition probabilities is an important cue that signals event structure, which can 
influence how quickly participants learn information (Fiser and Aslin, 2005; Saffran et al., 1996; 
Turk-Browne et al., 2005). Therefore, keeping the network structure uniform to remove transition 
probabilities as a potential source of information about which trials to expect next is important for 
testing whether participants can learn higher-order network topology.  

Participants completed a brief training procedure prior to starting each task. First, they were 
shown each image in its non-rotated orientation. Then, they were shown the rotated and non-
rotated versions side by side and asked to pick the non-rotated image. Next, they completed a 
practice version of the rotation detection task, where they saw each image once in random order. 
During each task, participants were also given audio feedback to assist them in learning the rotation 
of images. Specifically, they heard a high tone when they made an incorrect response and a low 
tone when they responded too slowly (greater than 1500 ms). 



The network structure for each task consisted of two clusters each composed of five nodes, 
and participants viewed a sequence of 1000 fractal images in each task. For the social task, 
participants were told that “the images that you will see are taken from an online social media 
platform where people can choose one of these images as their avatar to represent themselves, 
much like you might use a photo to represent yourself on Facebook or Twitter. While completing 
the task (described in more detail on the next page), please make sure you focus on the people 
these avatars represent.” In the non-social condition, participants were told that the “images were 
abstract patterns frequently found in rock formations. Some of these patterns are visible to the 
naked eye, whereas others are only visible with a microscope. These rock patterns are often created 
by natural forces, including tectonic plate shifts, wind and water erosion, and volcanic activity. 
While completing the task (described in more detail on the next page), please make sure you focus 
on the patterns in the rock formations.” 
 
2.4 Cross-cluster surprisal 
  

In order to estimate how well participants learned each network, we examined the cross-
cluster surprisal, which is measured as the difference in RT between transition trials that occurred 
immediately after a transition from one cluster to another and non-transition trials where the image 
is part of the same cluster as the previous trial (Karuza et al., 2017). If participants learn the cluster 
membership, then they should anticipate seeing a within-cluster image rather than an image from 
another cluster (Kahn et al., 2018; Karuza et al., 2019, 2017; Tompson et al., 2018). This surprisal 
effect should slow participants’ response to the rotation judgment on the next trial (Karuza et al., 
2017; Schapiro et al., 2013). 

To examine group-level effects of the community structure on participants’ responses, we 
used linear mixed effects models implemented with the lmer() function (library lme4, v. 1.1-10) 
in R (v. 3.2.2; R Development Core Team, 2015). The primary mixed effects model included node 
type (transition versus non-transition), network type (social versus non-social), order (social 
network first versus non-social network first), trial number (standardized), and the two-way and 
three-way interactions between these variables, as predictors of log-transformed RT; node type, 
network type, and trial number were included as within-subjects variables, and order was included 
as a between-subjects variable). For all models, all predictors were mean-centered and we included 
the fullest set of random effects that allowed the model to converge, which included a random 
intercept for participant and a by-participant random slope for trial number, network type, and 
node type. We then conducted simple effects analyses to examine whether the effect of node type 
was significant in both the social and non-social task conditions. We excluded incorrect trials 
(15.1% data loss), rotated trials (22.5% data loss), trials with RT less than 100 ms (less than 1% 
of trials), and outliers greater than 3 SD from the mean RT for each condition (less than 1% of 
trials). We also excluded a small number of trials (1.6% of trials) where the random walk 
transitioned from one cluster to another and then immediately transitioned back to the first cluster, 
which resulted in the middle trial counting as both a pre-transition and post-transition trial. 

 
2.5 fMRI acquisition 

 
Data were acquired on a 3T Siemens Prisma scanner with a 64-channel head/neck array. 

Functional images were acquired using a T2*-weighted image sequence with a repetition time 
(TR) of 1000ms, an echo time (TE) of 32ms, a flip angle of 60°, and a 20cm FOV consisting of 56 



with 2.5mm thickness acquired at a negative 30° tilt to the AC-PC axis, with a 2.5mm isotropic 
voxel size, and a multiband factor of four. We also acquired a high-resolution structural image 
using a T1-weighted axial MPRAGE sequence yielding 160 slices with a 0.9 by 0.9 by 1.0mm 
voxel size.  
 
2.6 fMRI data preprocessing 

 
Neuroimaging data was preprocessed using nipype (Gorgolewski et al., 2017) and nilearn 

(Abraham et al., 2014) implemented in python 2.7 using a combination of AFNI(Cox, 1996), FSL 
(Jenkinson et al., 2012; Smith et al., 2004), and ANTs (Avants, B. B., Tustison, N., & Song, 2009). 
The functional data underwent de-spiking to smooth outliers in each voxel using AFNI’s 
3dDespike, rigid transformation to correct for head motion using FSL’s MCFLIRT (Jenkinson et 
al., 2002), and slice-time correction using FSL’s Slicetimer to control for temporal differences in 
the order of the acquisition of the slices in each brain volume. Skull stripping was performed on 
the structural data using FSL’s BET. The mean functional image was computed and bias-corrected, 
and then the skull-stripped structural image was bias-corrected. Advanced Normalization Tools 
(ANTs) was used to compute the transformation parameters for the mean functional image to the 
high resolution structural image. ANTs segmentation was performed to obtain a warped structural 
image, a skull-stripped brain mask, and masks for white matter and cerebrospinal fluid. Confound 
regression was then conducted. The time series was detrended by regressing the time series on the 
mean and polynomial trends up to quadratic terms. AFNI’s 3dbandpass was used to filter out very 
high or very low fluctuations in the signal (with a high pass of 0.01 and a low pass of 0.12). We 
included 36 regressors in the confound regression, with six head-motion regressors, three 
physiological signal regressors (global signal, white matter, and cerebrospinal fluid), as well as 
their derivatives, quadratics, and squared derivatives. ANTs was used to warp the high-resolution 
structural image to the MNI template. The transformation parameters from the ANTs functional 
to structural co-registration and the transformation parameters from the ANTs structural to MNI 
co-registration were used to warp the 4D functional image to the MNI template. Finally, high 
variance compounds were removed (Behzadi et al., 2007) using nilearn. The current preprocessing 
stream was chosen based on studies that evaluated the performance of a wide variety of 
preprocessing pipelines in mitigating motion artifact in studies of BOLD functional connectivity 
(Ciric et al., 2017; Lydon-Staley et al., 2018). 
 
2.7 Functional connectivity 
  

In order to examine the functional brain network architecture of network learning, we used 
the local-global Schaefer cortical parcellation(Schaefer et al., 2018) that divides the human 
cerebral cortex into 400 functionally homogenous regions (Figure 1B). Given our interest in 
memory, learning, and social processes, we also added 10 subcortical regions in the left and right 
hippocampus, left and right amygdala, left and right ventral striatum, left and right caudate, and 
left and right thalamus using the Harvard-Oxford subcortical atlas (Frazier et al., 2005). 

To assess functional connectivity between the regions identified above, we first extracted 
the average timeseries of activation in each region and standardized the timecourse in each region 
using the nilearn (Abraham et al., 2014) package in Python 2.7. We then computed the task-
dependent connectivity between each pair of regions using a whole-brain psychophysiological 
interaction (WB-PPI) approach (Gerchen et al., 2014). For each pair of regions i and j, we 



computed a multiple regression with the timeseries of activation in region i as the dependent 
variable and the timeseries of activation in region j as an independent variable; we also included a 
boxcar function to represent the timeseries of each task (coded as 1 during transition trials and 0 
during non-transition trials), and we used a separate interaction term to represent the interaction 
between activation in region j and the task timeseries. In order to compute the interaction term, the 
timeseries in region j was first deconvolved from the canonical HRF function and then multiplied 
by the boxcar function. The boxcar function and interaction term were then re-convolved with the 
canonical HRF before computing the multiple regression model. Six head motion parameters and 
a constant term were also included in the model. These processes were implemented in Python 2.7 
using a combination of functions from the nilearn, nipy, and nistats packages, and were designed 
to follow as closely as possible the implementation of generalized PPI in SPM (McLaren et al., 
2012). We constructed a 410´410 functional connectivity matrix where the ijth element of the 
matrix represented the task-dependent connectivity (beta weight for the interaction term) between 
region i and region j. We then symmetrized the matrices for each run by averaging the upper and 
lower triangles, and then we averaged the functional connectivity matrices for the five runs for 
each task for each subject to yield two functional connectivity matrices for each subject (one for 
the social task and one for the non-social task). 

Given that the transition trials were determined by a random walk through the graph, there 
were a varying number of transition trials across runs and subjects. In order to account for this 
variation, we adopted a nonparametric permutation test of significance. We constructed 500 null 
model networks for each subject by shuffling the trial labels and rerunning the PPI analyses 
described above, keeping the number of transition trials in each run consistent. The true PPI beta 
weight for each edge (or other summary statistic) can be compared to the distribution of null model 
values to derive a p-value or z-score. Higher positive z-scores represent stronger functional 
connectivity in transition trials versus non-transition trials than would be expected given a random 
trial order. 

 
2.8 Hub analysis 
  

To identify which brain regions support network learning, we used node strength to identify 
hubs. Node strength is defined as the sum of all the connection weights to an ROI. Node strength 
was measured by averaging the subject functional connectivity matrices and then computing the 
sum of the connectivity of each node with all other nodes. We computed the node strength for the 
combined social and non-social brain network (averaging across the social and non-social tasks) 
and the social versus non-social brain network (subtracting the average non-social connectivity 
matrix from the average social connectivity matrix). We repeated this procedure for our 500 null 
model networks, and z-scored the node strength statistics. We identified hubs that had significantly 
greater node strength (FDR-corrected p<0.05) for transition trials than for non-transition trials 
across both the social network learning condition and the non-social control condition (domain-
general hubs), hubs that had significantly greater node strength for the social network condition 
than for the non-social control condition (social hubs), and hubs that had significantly greater node 
strength for the non-social control condition than for the social network condition (non-social 
hubs).   
 After identifying hubs that were recruited during network learning, we next sought to 
determine which other brain regions were most strongly connected to those hubs. We began by 
computing the average strength of connectivity within and between sets of hubs in a priori regions 



of interest. In particular, we were interested in hippocampus, mPFC, and lPFC based on previous 
work (Schapiro et al., 2013), as well as TPJ based on its role in social processing (Tso et al., 2018). 
We further broke this down into left and right portions of the following regions: hippocampus, 
TPJ, vmPFC, dmPFC, and lPFC. Left and right hippocampus were defined based on the Harvard-
Oxford atlas labels. Unfortunately, the Schaefer parcellation does not provide labels for mPFC, 
lPFC, or TPJ, and we therefore used a data-driven approach to assign parcels to these anatomical 
regions. Specifically, parcels were considered part of dorsal medial prefrontal cortex (dmPFC) if 
their center of gravity had x-coordinates between -20 and +20, y-coordinates greater than +30, and 
z-coordinates greater than 0. Parcels were considered part of ventral medial prefrontal cortex 
(vmPFC) if their center of gravity had x-coordinates between -20 and +20, y-coordinates greater 
than +20, and z-coordinates less than 0. Parcels were considered part of lateral prefrontal cortex 
(lPFC) if their center of gravity had x-coordinates more negative than -20 or more positive than 
+20, y-coordinates greater than 0, and z-coordinates between -40 and +40. Parcels were considered 
part of TPJ if they had a center of gravity with x-coordinates more negative than -40 or more 
positive than +40, y-coordinates between -10 and -60, and z-coordinates between 0 and 30. 

We computed the average strength of connectivity within and between each set of ROIs. 
We first averaged the connectivity strength across all hubs within each of the a priori ROIs across 
both the social and non-social networks to obtain each ROI’s within-region domain-general 
connectivity. Next, we averaged the connectivity between each pair of ROIs to compute the 
between-region domain-general connectivity. We also computed the within-region and between-
region average connectivity for the social versus non-social connectivity matrix. We then repeated 
this procedure for our 500 null model networks, and z-scored the average ROI connectivity 
statistics for the domain-general analysis and the social versus non-social analysis. 
 
2.9 Cognitive systems involved in network learning 
  

We next examined whether the hubs identified based on node strength were clustered in 
particular cognitive systems. Using the Yeo 17-system parcellation which subdivides cognitive 
control, default mode, dorsal attention, ventral attention, somatomotor, limbic, and visual systems 
into 2-3 subsystems each (Schaefer et al., 2018; Yeo et al., 2011), we counted the number of hubs 
that were located in each system. Because the hubs were defined based on the null models, we 
randomly permuted the system labels for each hub 500 times; this procedure allowed us to maintain 
the total number of hubs and the total number of nodes in each system. We then compared the 
actual number of hubs in each system to the distribution of hubs in each system from the 500 
permutations to calculate z-scores and p-values for each system. These statistics thus represented 
the probability that at least that many hubs were located in each system compared to randomly 
assigned system labels. 
 We also computed the average connectivity within and between each set of systems. We 
first averaged the connectivity across all regions within each of the Yeo cognitive systems across 
both the social network condition and the non-social control condition to compute each system’s 
within-system domain-general connectivity. Next, we averaged the connectivity between each pair 
of systems to compute the between-system domain-general connectivity. We also computed the 
within-system and between-system average connectivity for the social versus non-social 
connectivity matrix. We then repeated this procedure for our 500 null model networks, and z-
scored the average system connectivity statistics for the domain-general analysis and the social 
versus non-social analysis. 



 
2.10 Association between network learning and brain hubs 
  

In addition to examining which brain regions operate as hubs supporting network learning, 
we were also interested in whether individual differences in hub connectivity might be associated 
with individual differences in learning. That is, are individuals with stronger connectivity in the 
hubs identified above also better at learning network structure? To address this question, we took 
the subject-level connectivity matrices and computed the average node strength for each set of 
hubs (domain-general hubs, social hubs, and non-social hubs) for each subject, as well as the 
average node strength of hubs in a priori ROIs (hippocampus, dmPFC, lPFC, and TPJ). This 
process yielded 11 node strength metrics (social hub node strength, left TPJ hub node strength, 
right TPJ hub node strength, non-social hub node strength, left dmPFC node strength, right dmPFC 
node strength, left lPFC node strength, right lPFC node strength, domain-general cortical hubs 
node strength, left hippocampus node strength, and right hippocampus node strength).  

For each subject, we converted the node strength values to z-scores by comparing the 
average node strength to a distribution of average node strengths obtained from 500 null model 
networks. We then constructed a separate linear mixed effects model for each node strength metric. 
Each model included node strength, node type (transition versus non-transition), network type 
(social versus non-social), order (social network first versus non-social network first), trial number 
(standardized), and the two-way, three-way, and four-way interactions between these variables as 
predictors of log-transformed RT; node type, network type, and trial number were included as 
within-subjects variables, and both order and hub connectivity were included as between-subjects 
variables. We then examined simple effects within network type for each hub with a significant 
node type x node strength interaction or a significant node type x network type x node strength 
interaction. Adding head motion as a covariate or adding mean activation for transition versus non-
transition trials as a covariate did not alter the results that we report (see Supplementary Results). 

In addition to examining the relationship between node strength and network learning, we 
also examined whether average connectivity within different types of hubs was associated with 
network learning. To address this question, we computed the average connectivity within each set 
of hubs (domain-general hubs, social hubs, and non-social hubs) for each subject, converted all 
values to z-scores based on the non-parametric statistical approach described above, and 
constructed linear mixed effects models also using the approach described above. Adding head 
motion as a covariate or adding mean activation for transition versus non-transition trials as a 
covariate did not alter the results that we report (see Supplementary Results). 

 
2.11 Data and code availability 
 
The data and code to reproduce all analyses and figures in this paper are available in Github 
repository [https://github.com/stompson/Tompson_Network_Learning_fMRI]. 
 



 
 
Figure 1. Schematic of methods. (A) Illustration of a random walk on a graph in which nodes are fractal 
images, and edges indicate allowable transitions between nodes. In the social network learning task, 
participants were told that the images were avatars representing people; in the control condition, participants 
were told that the images were rock formations. During the experiment, participants only saw the 
continuous stream of images, without any explicit indication of the graph from which the stream was drawn. 
Here we depict the graph to convey to the reader the statistical relationships among the images critical for 
the analysis. (B) Functional MRI data was collected continuously as participants performed the task. A 
network model of functional connectivity was constructed by first parcellating the brain into 400 cortical 
regions of interest using the Schaefer atlas (Schaefer et al., 2018) and then complementing that cortical 
parcellation with a parcellation of the subcortex composed of 10 additional regions of interest using the 
Harvard-Oxford atlas(Frazier et al., 2005). Each parcel was represented as a node in a brain network. (C) 
We used a whole-brain psychophysiological interaction model (Gerchen et al., 2014) to simultaneously 
estimate connectivity and its relation to the task. We first extracted the average timeseries from 410 brain 
regions defined by the Schaefer and Harvard-Oxford atlases. For each pair of regions i and j, we computed 
a multiple regression with the timeseries of activation in region i as the dependent variable and the 
timeseries of activation in region j as the independent variable; we also included a boxcar function to 
represent the timeseries of each task, and we used a separate interaction term to represent the interaction 
between activation in region j and the task timeseries. We constructed a 410´410 functional connectivity 
matrix where the ijth element of the matrix represented the task-dependent connectivity (beta weight for the 
interaction term) between region i and region j. This process was then repeated 500 times by shuffling the 
condition labels for the trials to generate null models of connectivity for each pair of brain regions. We 
computed node strength as the sum of the connectivity of each brain region with all other brain regions. We 
then compared the true node strength metric to the distribution of null model values to derive a p-value or 
z-score, with higher z values indicating a score that is stronger than would be expected given a random trial 
order. 



 
3. Results 

 
3.1 Behavioral evidence for network learning 
  

We began our investigation by assessing participant reaction time, and its dependence on 
the graph architecture from which the stream of stimuli were drawn. Initially, the data were 
collapsed across the social and non-social learning tasks, and we observed significant cross-cluster 
surprisal, as indicated by an increase in reaction time on trials transitioning from one cluster to 
another than on trials moving within a cluster (B=0.015, SE=0.003, t(24.461)=4.382, p<0.001). We 
also observed a significant decrease in reaction time in later trials compared to earlier trials (B=-
0.021, SE=0.005, t(32.989)=-3.992, p<0.001). We did not observe a significant difference in the 
magnitude of the cross-cluster surprisal effect between social and non-social networks (B=-0.002, 
SE=0.002, t(31,212.004)=-0.802, p=0.423), nor a significant difference in the speed at which the 
cross-cluster surprisal effect emerged (B=-0.004, SE=0.002, t(31,712.291)=1.778, p=0.075). 
When we examined the two tasks separately, we found a significant cross-cluster surprisal effect 
for both the social network task (B=0.013, SE=0.004, t(25.614)=3.537, p=0.002) and the non-
social control task (B=0.016, SE=0.006, t(23.866)=2.901, p=0.008), consistent with the idea that 
participants were able to learn both graph structures. Participants also did not differ in their mean 
accuracy for the social network task (M=84.8%, SD=10.1%) and for the non-social control task 
(M=84.9%, SD=9.3%, t(25)=0.091, p=0.928). 

 
3.2 Functional hubs that support network learning  

 
We next sought to identify the brain network features that support network learning 

generally. We examined the relationship between brain networks and network learning at two 
levels of resolution: the region-level and the system-level. This approach enables us to examine 
both which specific brain regions are involved in network learning as well as which groups of 
brain regions are involved in network learning. 

We began by identifying the functional hubs that were shared across the social network 
task and the non-social control task. Specifically, we computed the average strength for each node 
across the brain networks extracted by PPI during both conditions. We normalized each strength 
value to obtain a z-score, by comparing the node strength to a null distribution (see Methods and 
Figure 2A). We found that hippocampus, thalamus, dmPFC, STG, temporal pole, and OFC 
displayed significantly greater node strength for transition trials than for non-transition trials across 
both tasks (FDR corrected p<0.05 over brain regions; Figure 2B). In contrast, visual cortex, IPL, 
TPJ, insula, and dlPFC exhibited significantly greater node strength for non-transition trials than 
for transition trials across both tasks (FDR corrected p<0.05 over brain regions; the full list of 
regions is included in Table S1 in Supplementary Results). 

To better understand this pattern of results, we assessed to what degree functional hubs 
were found within putative functional systems defined by an a priori community 
assignment(Frazier et al., 2005; Yeo et al., 2011). We found that 86% of the regions displaying 
significantly greater node strength for transition than non-transition trials were concentrated in 
hippocampus, limbic system, default mode systems, and sensory systems (see Figure 2C). In 
particular, the number of such regions in the hippocampus (Z=2.748, FDR-corrected p=0.027) and 
limbic system (Z=3.291, FDR-corrected p<0.001) were significantly greater than expected in a 
non-parametric permutation-based null model in which regions were randomly assigned to 



systems. In contrast, we found that 78% of the regions displaying significantly greater node 
strength for non-transition than transition trials were concentrated in cognitive control and 
attention systems. In particular, the number of hubs in the cognitive control subsystem C (Z=2.878, 
FDR-corrected p=0.018), the dorsal attention subsystem A (Z=3.291, FDR-corrected p<0.001), 
and the dorsal attention subsystem B (Z=2.226, FDR-corrected p=0.039) were significantly greater 
than expected in the non-parametric permutation-based null model. These results indicate that 
different brain systems may underlie the ability to learn different features of network structures. 
 

 
Figure 2. Patterns of functional connectivity in the brain are distinct in transition trials compared to non-
transition trials. (A) Functional connectivity matrix showing edges with significantly different weights (FDR 
corrected p<0.05 over edges) for transition (upper triangle in purple) versus non-transition (lower triangle in green) 
trials. (B) Whole-brain map showing regions with significantly different strength z-scores for transition (purple) versus 



non-transition (green) trials (FDR corrected p<0.05 over brain regions). (C) Bar graph showing the percentage of 
network hubs identified in each cognitive system relative to the percentage identified in a non-parametric null model 
(gray box plots). (D) By averaging edge weights both within and between putative functional systems, we constructed 
a system-level connectivity matrix. Here we display that matrix showing systems with significantly different 
connectivity for transition (purple) versus non-transition (green) trials (FDR corrected p<0.05 over edges in the 
system-level matrix).  

 
 In a complementary analysis, we examined these relationships at a coarser, system level 
by averaging edge weights within and between the same putative functional systems(Frazier et al., 
2005; Yeo et al., 2011), and then we tested whether these coarse-grained elements differed for 
transition and non-transition trials. We observed that functional connectivity within the limbic and 
default mode systems was significantly greater for transition trials than for non-transition trials. 
Furthermore, functional connectivity between the hippocampus and default mode system, between 
the hippocampus and somatomotor system, and between the default mode and somatomotor 
systems, was significantly greater for transition trials than for non-transition trials. In contrast, 
connectivity within the visual system and connectivity between frontal cognitive control systems 
and default mode systems was significantly greater for non-transition trials than for transition trials 
(see Figure 2D). Taken together, these results suggest that memory, default mode, and sensory 
systems have greater node strength as well as connectivity with each other during transitions 
between clusters than during trials occurring within a cluster. 
 
3.3 Functional hubs that preferentially support social network learning  

 
After characterizing functional hubs involved in both conditions, we next sought to 

determine whether some hubs preferentially supported social network learning. We once again 
examined the relationship between brain networks and network learning at a coarse-grained 
systems level as well as a more fine-grained region level, which allows us to examine which 
specific brain regions are preferentially involved in social network learning as well as which 
groups of brain regions are preferentially involved in social network learning. 

To address this question, we computed the difference in average node strength for each 
potential hub for social versus non-social networks. We normalized each difference value to obtain 
a z-score by comparing it to a null distribution (see Methods). We observed significantly greater 
node strength for the social network condition than the non-social control condition in TPJ, PCC, 
middle cingulate, precentral gyrus, postcentral gyrus, and visual cortex (FDR-corrected p<0.05; 
see Figure 3B; full list of regions is included in Table S2 in Supplementary Results). For 
completeness, we also assessed whether some hubs were stronger in the non-social control 
condition.  We observed significantly greater node strength in the non-social control condition 
than in the social network condition in bilateral dmPFC, IFG, middle cingulate, inferior temporal 
lobe, visual cortex, and dlPFC (FDR-corrected p<0.05; see Figure 3B and Table S3). Collectively, 
these results suggest distinct regional involvement in social network learning in comparison to a 
non-social control condition. 
 



 
Figure 3. Patterns of functional connectivity in the brain are distinct for social network learning compared to 
a non-social control condition. (A) Functional connectivity matrix showing edges with significantly different 
weights for the social network condition (upper triangle in red) versus the non-social control condition (lower 
triangle in blue). Significance was assessed after an FDR correction at p<0.05 over edges. (B) Whole-brain map 
showing regions with significantly different strength z-scores for trials in the social network condition (red) versus 
in the non-social control condition (blue). Significance was assessed after an FDR correction at p<0.05 over brain 
regions. (C) Bar graph showing percentage of network hubs identified in each cognitive system for the social 
network condition versus the non-social control condition, relative to the percentage identified in a non-parametric 
null model (gray box plots). (D) By averaging edge weights both within and between putative functional systems, 
we constructed a system-level connectivity matrix. Here we display that matrix showing systems with significantly 
different connectivity for the social network condition (red) versus the non-social control condition (blue). 
Significance was assessed after FDR correction at p<0.05 over edges in the system-level matrix.  
 



To better understand this pattern of results, we assessed to what degree these functional 
hubs were found within putative functional systems defined by an a priori system assignment(Yeo 
et al., 2011). We found that 81% of the regions displaying significantly greater node strength in 
the social network condition than in the non-social control condition were concentrated in the 
default mode, somatomotor, and visual systems (Figure 3C). In particular, the number of such 
regions in somatomotor subsystem A (Z=3.291, FDR-corrected p<0.001), somatomotor subsystem 
B (Z=3.291, FDR-corrected p<0.001), and peripheral visual subsystem (Z=3.291, FDR-corrected 
p<0.001) were significantly greater than expected in a non-parametric permutation-based null 
model in which regions were assigned to systems uniformly at random. The number of such 
regions in the temporoparietal default subsystem trended towards significance after FDR-
correction (Z=1.995, FDR-corrected p=0.090). In contrast, we found that 65% of the regions 
displaying significantly greater node strength for the non-social control condition than the social 
network condition were concentrated in cognitive control and attention systems. In particular, the 
number of such regions in cognitive control subsystem A (Z=3.291, FDR-corrected p<0.001), 
cognitive control subsystem B (Z=3.291, FDR-corrected p<0.001), default subsystem B (Z=2.290, 
FDR-corrected p=0.050), dorsal attention subsystem A (Z=2.290, FDR-corrected p=0.050), and 
ventral attention subsystem B (Z=3.291, FDR-corrected p<0.001) were significantly greater than 
expected in the same non-parametric permutation-based null model. The number of such regions 
in default subsystem A was marginally significant after FDR-correction (Z=1.995, FDR-corrected 
p=0.090). 

In a complementary analysis, we examined these relationships at a coarser, system level 
by averaging edge weights within and between the same putative functional systems (Yeo et al., 
2011), and then we tested whether these coarse-grained elements differed for the social network 
condition compared to the non-social control condition. We observed that functional connectivity 
was significantly greater within the default mode and somatomotor systems for the social network 
condition than for the non-social control condition (FDR-corrected p<0.05; see Figure 3D). In 
contrast, we observed that functional connectivity was significantly greater within the dorsal 
attention, ventral attention, and central visual systems for the non-social control condition than for 
the social network condition (FDR-corrected p<0.05). Expanding our assessment to both within- 
and between-system connectivity, we found that the temporoparietal, default mode, and 
somatomotor systems were more strongly connected to each other and to the peripheral visual 
subsystem in the social network condition, suggesting that the hubs that we identified in the 
temporoparietal cortex may be integrating sensory information with the social context. In contrast, 
the non-social control condition was primarily characterized by increased connectivity between 
frontal cognitive control and attention systems, as well as limbic systems and frontal default 
systems. Thus, cognitive systems involved in social network learning reconfigure to form distinct 
subnetworks from those involved in non-social network learning. 
 
3.4 Specific connectivity patterns of functional hubs support social network learning 

 
To complement the whole-brain analyses reported in the previous sections, we wished to 

evaluate specific connectivity patterns emanating from functional hubs that might preferentially 
support social network learning. We began our investigation by considering the specific role of 
the hippocampus, largely motivated by important prior work offering evidence in favor of its role 
in similar tasks (Schapiro et al., 2016, 2014). We found that the hippocampus was connected to 
different regions during the social network task compared to the non-social control task (Tables 



S4 and S5 in Supplementary Results). In particular, the left hippocampus had significantly stronger 
connectivity with the dmPFC and IFG during the non-social control condition (FDR-corrected 
p<0.05; Figure 4A), whereas the left hippocampus had significantly stronger connectivity with 
TPJ during the social network condition than the non-social control condition (FDR-corrected 
p<0.05). The right hippocampus also had significantly stronger connectivity with IFG during the 
non-social control condition (FDR-corrected p<0.05) and significantly stronger connectivity with 
bilateral TPJ during the social network condition (FDR-corrected p<0.05). During both conditions, 
we found that the hippocampus exhibited significantly greater connectivity with hubs specific to 
the non-social control task, including the dmPFC and IFG (FDR-corrected p<0.05). 

To examine if these relationships existed at the systems-level, we averaged edge weights 
of hubs within a priori regions of interest (hippocampus, dmPFC, lPFC, and TPJ) in order to 
examine how connectivity between hubs involved in both conditions might interact with hubs 
preferentially supporting learning in the social network task or the non-social control task. We 
found that hippocampus exhibited significantly greater connectivity with non-social hubs 
including dmPFC and IFG for non-social tasks than social tasks (FDR-corrected p<0.05; Figure 
4B). This set of findings suggests that brain regions that have the strongest connectivity during 
non-social (relative to social) tasks are engaging with memory systems in support of learning the 
network structure of non-social networks.  
 

 
Figure 4. Functional connectivity between the hippocampus and other brain areas. (A, top) Significant edges 
representing greater connectivity between the hippocampus (indicated in yellow) and other hubs during the social 
network learning condition than during the non-social control condition (top image).  (A, bottom) Significant edges 
representing greater connectivity between the hippocampus (indicated in yellow) and other hubs during the non-social 
control condition than during the social network condition (bottom image). Significance is assessed after FDR 
correction at p<0.05 over the number of edges. (B) Connectivity matrix representing the average connectivity within 
and between hubs in a priori defined ROIs, thresholded at an FDR-corrected p<0.05.  

 
3.5 Relation between brain connectivity and behavioral performance 

 
Finally, we sought to test whether individual differences in hub connectivity were 

associated with how well individuals learned the network architecture from which the sequence of 
stimuli were drawn. To address this question, we calculated the average node strength for each of 
the hubs identified above in the TPJ, dmPFC, lPFC, and hippocampus, separately for each 
participant. Specifically, we considered (i) social hubs as the TPJ regions that had significantly 



greater node strength for the social network condition than for the non-social control condition, 
(ii) non-social hubs as the medial and lateral PFC regions that had significantly greater node 
strength for the non-social control condition than for the social network condition, (iii) domain-
general cortical hubs as TPJ and mPFC regions that had significantly greater node strength than 
other brain areas across both conditions, and (iv) domain-general subcortical hubs as the 
hippocampus, which had significantly greater node strength than other brain areas across both 
conditions. This process yielded node strength values for 11 hubs and three metrics of hub-to-hub 
connectivity (see Methods and Supplementary Results for a full list and for further details 
regarding the results).  

We constructed a linear mixed effects model with hub connectivity, node type (transition 
versus non-transition), network type (social versus non-social), trial number (standardized), and 
the two-way, three-way, and four-way interactions between these variables as predictors of log-
transformed RT; node type, network type, and trial number were included as within-subjects 
variables, and both order and hub connectivity were included as between-subjects variables. Five 
significant effects survived FDR-correction for multiple comparisons. 

First, we observed a significant 2-way interaction between node type and social hub node 
strength (B=0.008, SE=0.003, t(190.896)=2.730, FDR-corrected p=0.049), such that the cross-
cluster surprisal effect was significantly greater across network types when individuals had greater 
node strength in the left TPJ (Figure 5A). However, the 2-way interaction between node type and 
left TPJ was not significant when social networks (B=0.008, SE=0.004, t(25.315)=1.741, FDR-
corrected p=0.117) and non-social networks (B=0.006, SE=0.005, t(20.891)=1.200, FDR-
corrected p=0.528) were examined separately. 

Second, we observed a significant 2-way interaction between node type and left TPJ node 
strength (B=0.011, SE=0.003, t(253.818)=4.018, FDR-corrected p=0.001), such that the cross-
cluster surprisal effect was significantly greater across network types when individuals had greater 
node strength in the left TPJ (Figure 5B). The 2-way interaction between node type and left TPJ 
was significant for social networks (B=0.008, SE=0.004, t(1300.076)=2.360, FDR-corrected 
p=0.046) but not for non-social networks (B=0.011, SE=0.005, t(21.105)=2.195, FDR-corrected 
p=0.197).  

Third, we observed a significant 3-way interaction between node type, network type, and 
left hippocampus node strength (B=0.007, SE=0.003, t(231.158)=2.571, FDR-corrected p=0.050; 
Figure 5C). The cross-cluster surprisal effect was greater for social networks when individuals had 
greater node strength in the left hippocampus, although this effect was not significant after FDR-
correction (B=0.008, SE=0.004, t(24.752)=2.136, FDR-corrected p=0.071); the interaction was not 
significant for non-social networks (B=-0.005, SE=0.006, t(20.354)=-0.813, FDR-corrected 
p=0.532).  

Fourth, we observed a significant 3-way interaction between node type, network type, and 
left dmPFC node strength (B=-0.009, SE=0.003, t(191.084)=-2.859, FDR-corrected p=0.033), 
such that the cross-cluster surprisal effect was greater for non-social networks when individuals 
had greater node strength in left dmPFC (Figure 5D). However, the 2-way interaction between 
node type and left dmPFC was not significant when social networks (B=-0.002, SE=0.003, 
t(19.254)=-0.668, FDR-corrected p=0.512) and non-social networks (B=0.007, SE=0.007, 
t(21.650)=1.025, FDR-corrected p=0.528) were examined separately.  

Fifth, we observed a significant 3-way interaction between node type, network type, and 
connectivity between social hubs in left and right TPJ (B=0.008, SE=0.003, t(208.910)=2.898, 
FDR-corrected p=0.033; Figure 5E). The cross-cluster surprisal effect was significantly greater for 



social networks when individuals had greater connectivity between social hubs in left and right 
TPJ (B=0.012, SE=0.004, t(227.291)=2.919, FDR-corrected p=0.019), whereas the interaction was 
not significant for  non-social networks (B=-0.003, SE=0.005, t(20.066)=-0.600, FDR-corrected 
p=0.556). None of the other hub connectivity metrics were significantly associated with behavior 
(see Supplementary Results for full output of the mixed effects model). 
 

 
Figure 5. Association between brain connectivity and network learning. Greater (A) social hub node strength, 
(B) left TPJ node strength, (C) left dmPFC node strength, (D) left hippocampus node strength, and (E) connectivity 
between TPJ hubs was associated with a larger cross-cluster surprisal effect for both social and non-social networks, 
as evidenced by slower (larger) RT for transition (purple) than non-transition (green) trials.  
 

 
4. Discussion 

 
In this paper, we investigate the brain networks involved in the implicit learning of 

community structure for social networks. Navigating interwoven layers of social connections is 
critical for success in a broad range of social interactions with co-workers, friends, family 
and strangers (Balkundi and Harrison, 2006; Decostanza et al., 2012; Fitzhugh and DeCostanza, 
2016; Liu and Chen, 2003). Although there is an extensive literature examining how people learn 
relational information in the domains of language learning (Goldstein and Vitevitch, 2014; 
Lieberman et al., 2004), motor sequence learning (Hung et al., 2018; Kahn et al., 2018; Robertson, 
2007), and statistical learning (Karuza et al., 2017; Schapiro et al., 2013; Turk-Browne et al., 
2005), little is known about the neural mechanisms underlying how people learn relational 
information about social networks. Building on this extant literature, we showed both overlap and 
divergence in the brain networks involved in social and non-social network learning. We found 
that the hippocampus operated as a hub supporting both types of network learning. 
Temporoparietal regions of the default mode system operated as hubs preferentially supporting 
social network learning, where they were also more strongly connected to the hippocampus as well 
as to somatomotor and visual systems. Medial and lateral prefrontal cortical regions in both the 
default mode system and frontal cognitive control system operated as hubs preferentially 



supporting non-social network learning, where they were also more strongly connected to the 
hippocampus as well as to cognitive control and attention systems. Furthermore, individuals who 
had stronger hubs in the temporoparietal default system were better at learning the community 
structure of the social networks. This work is the first neuroscience study to directly compare 
relational learning in social and non-social networks, and provides insights into how the brain 
reconfigures to support this learning process. 
 
4.1 Memory systems support learning both social and non-social networks 
 

Consistent with prior work examining how people learn relational information in other 
domains (Hung et al., 2018), the hippocampus and PFC have also been found to play an integral 
role in the learning of community structure present in networks comprised of visual images 
(Schapiro et al., 2016, 2013). Evidence suggests that multivariate patterns in the hippocampus and 
IFG represent information about which communities individual nodes belong to, whereas mPFC 
represents boundaries and transitions (Schapiro et al., 2016, 2013). Importantly, lesion studies also 
suggest that the hippocampus is necessary for learning the statistical relationships between non-
social objects (Covington et al., 2018; Schapiro et al., 2014). Here, we extend this work by 
applying graph theory to show that the hippocampus is a primary hub supporting both social and 
non-social network learning. Both the hippocampus and parahippocampal gyrus have significantly 
greater node strength for transition trials than for non-transition trials. This pattern of results is 
consistent with work suggesting that the hippocampus integrates representations of objects and 
their spatiotemporal context from disparate cortical areas (Opitz, 2010), as well as evidence 
suggesting that hippocampal-cortical connections support simulation of future navigation in 
complex spatial maps (Javadi et al., 2017).  

At the system-level, the hippocampus exhibits stronger connectivity with the default mode 
system for transition trials than for non-transition trials. This pattern of results is consistent with 
prior studies providing evidence that the default mode system is involved in developing and 
maintaining models that predict and simulate future events (Buckner, 2010). In the context of 
learning community structure in networks, transition trials may be interpreted as prediction errors, 
given that participants are responding more slowly because they anticipated the next trial to remain 
within a community (Kahn et al., 2018; Lynn et al., 2018; Schapiro et al., 2013). In the context of 
spatial navigation, some researchers have argued that prefrontal cortex monitors prediction errors 
and updates contextual information about the prediction, which is then integrated by the 
hippocampus into an updated mental model (Spiers and Gilbert, 2015). Similarly, medial default 
mode network regions process temporal information about motor patterns and support the testing 
of predictive models of future motor sequences (Carvalho et al., 2016). It is intuitively plausible 
that the hippocampus and regions of the default mode may be communicating with one another to 
update predictions about future trials and representations of the community structure.  

Although the hippocampus operates as a hub during both social and non-social network 
learning, the pattern of connections to cortical areas differs for the two conditions. At the region 
level, the hippocampus is primarily connected to temporoparietal, somatomotor, and visual areas 
during social network learning, whereas it is primarily connected to medial prefrontal, lateral 
prefrontal, and inferior temporal areas during non-social network learning. This differentiation of 
connectivity is consistent with past work showing that temporoparietal regions support updating 
of prediction errors by validating mental models against sensory inputs (Kluger and Schubotz, 
2017). Collectively, the pattern of findings suggests that there exist marked differences in how the 



hippocampus is integrating information to update representations of the community structure of 
social versus non-social networks. 
 In the current study, we analyzed hippocampus as a single region, but recent work suggests 
that anterior and posterior subregions of the hippocampus support the learning of different network 
features. In particular, posterior hippocampus has been linked to learning more local spatial 
features such as number of nearby edges whereas anterior hippocampus has been linked to learning 
more global spatial features such as the average shortest path length to get to any other node (Javadi 
et al., 2017). Moreover, previous work examining the role of hippocampus in learning community 
structure of non-social networks found that multivariate representations of community structure in 
the hippocampus are primarily located in the anterior hippocampus (Schapiro et al., 2016). Future 
work could investigate whether anterior and posterior hippocampus are involved in learning local 
versus global features of social networks as well. 
 
4.2 Nexus hubs versus top-down control of network learning 
 

Beyond the role of memory systems in network learning, we observed notable connectivity 
patterns in temporoparietal brain areas including the right TPJ. Temporoparietal, default, 
somatomotor, and peripheral visual subsystems were more strongly connected to each other during 
social network learning than during the non-social control condition. This pattern of results is 
consistent with prior work that suggests that TPJ may integrate sensory information with 
information about the broader social context to support decision-making (Carter et al., 2012; Carter 
and Huettel, 2013; Lahnakoski et al., 2012), in part due to its location at the intersection of brain 
regions involved in many different types of cognitive processes (Carter et al., 2012). In light of 
these prior studies, it would appear possible that TPJ is integrating information about the visual 
features of the images with motor responses from the task and with the social/online avatar framing 
of the task to support the participants’ learning. Importantly, the node strength of left and right TPJ 
hubs as well as the connectivity among TPJ hubs was significantly correlated with cross-cluster 
surprisal for the social network condition but not for the non-social control condition, supporting 
the region’s role in social network learning specifically. 

By contrast, non-social network learning primarily involved connectivity with prefrontal 
brain areas including the dmPFC and IFG. Frontal cognitive control and attention subsystems were 
more strongly connected to each other, as well as more strongly connected to medial prefrontal 
default subsystems, during non-social network learning than during social network learning. One 
possible interpretation of this result is that cognitive control and attention areas are exerting top-
down control to direct processing of sensory information (Lee and D’Esposito, 2012; Miller and 
Cohen, 2001; Spiers and Gilbert, 2015) in support of developing a mental representation of the 
non-social network. Here, prefrontal cortical regions may be either modulating sensory processing 
of stimuli to support the goal of learning the non-social network (Lee and D’Esposito, 2012), or 
may be modulating attention to information that hippocampus will integrate into an updated mental 
representation (Spiers and Gilbert, 2015). 

It is also interesting to note that we did not find individual differences in any brain hubs or 
systems that were significantly correlated with individual differences in the magnitude of the cross-
cluster surprisal effect during the non-social control condition. Contrasting the group-level 
findings with these individual-level findings, our data suggest that prefrontal systems are 
consistently engaged in the cognitive processes that we study here, but that individual differences 



in behavior may require explanations that include other regional features, or other brain regions 
altogether. 
 
4.3 Representing features of real-world social networks 
 
 Our study expands upon recent work investigating how people represent the positions of 
individuals in a social network. The social brain is involved in many overlapping sub-processes, 
including mentalizing (dmPFC and TPJ), emotion processing (amygdala and insula), social reward 
(ventral striatum and vmPFC), and autobiographical memory (mPFC and PCC). In the context of 
representing information about social networks, brain regions associated with mentalizing and 
reward are involved in representing information about the social value of other college students in 
their dormitory (Morelli et al., 2018). People also develop neural representations of information 
about others’ social position including their network centrality, brokerage opportunities in the 
network, and social distance from the perceiver (Parkinson et al., 2018, 2017, 2014). Collectively, 
these studies focus on the position of individual nodes in a social network, and we expand upon 
this work by considering meso-scale features of the social network including its community 
structure.  

Here, we find that many of the brain regions implicated in representing the network 
position of individual nodes are also important for learning community structure (e.g., PCC and 
right TPJ). Importantly, we also show that functional connectivity between these brain regions, 
and functional connectivity with memory regions including the hippocampus, is important for 
learning meso-scale network features. A notable absence from our findings is the set of reward-
related regions (e.g., ventral striatum, OFC, and vmPFC), which do not appear to be strongly 
involved in social network learning. 

Although beyond the scope of the current study, it would also be important to examine 
whether these effects extend to learning real-world social networks. Given the ubiquitous nature 
of online social interactions in modern social life, we believe that this process closely mirrors how 
individuals mentally represent their social networks. Nevertheless, it is possible that true social 
exchange differs from anthropomorphizing images, particularly in the cognitive processes 
involved. Therefore, future work should investigate whether there are differences in the functional 
brain networks that support learning real-world social networks versus networks of avatars that 
represent people. 

Furthermore, social networks in turn have been linked to individual differences in neural 
processes underlying information processing and decision-making. Belonging to the same group 
influences reward processing (Fareri, Niznikiewicz, Lee, & Delgado, 2012) and recruitment of 
TPJ has been linked to individual’s position in their social network (O’Donnell et al., 2017; 
Schmälzle et al., 2017). For example, people who occupy more central positions in their social 
network tend to recruit TPJ more when making sense of social information (O’Donnell et al., 
2017). People with less dense social networks also show greater functional connectivity between 
left and right TPJ when making sense of social contexts such as being excluded (Schmälzle et al., 
2017) and those who are more receptive to peer influence show higher node strength of TPJ 
(Wasylyshyn et al., 2018). Our work expands on this extant literature by showing that people who 
have high TPJ node strength and greater functional connectivity between left and right TPJ learn 
social networks better. Learning information about the community structure of social networks 
might be important for how individuals position themselves in their social network, or the positions 



of individuals within their social network might influence which brain regions they use to process 
social information. 
 
4.4 Methodological considerations and limitations 
 
 Several methodological considerations are pertinent to this work. First, given the contrast 
between the two conditions in the current paradigm, one might anticipate that brain regions 
involved in considering the mental states of others might be most strongly involved in the social 
network condition. While we do find that TPJ is more strongly involved in the social condition, 
other mentalizing regions including dmPFC were actually more strongly involved in the non-social 
control condition. Moreover, we did not find any significant relationships between functional 
connectivity in TPJ and self-report measures of social traits (see Supplementary Results). Thus, it 
is difficult to conclude that social network learning demands additional mentalizing processes 
relative to non-social network learning. In the current study we used the same abstract shapes to 
represent people (social condition) or rock formations (non-social control condition). It is possible 
that a stronger manipulation, perhaps using real people or real social networks, might yield 
stronger recruitment of mentalizing brain regions. 

Second, one key difference between the social and non-social tasks is that participants are 
told to focus on the people represented by the images in the social task but to focus on the patterns 
in the images in the non-social task. Thus, both the type of attentional focus and the type of 
cognitive process elicited could be different between the social and non-social tasks. However, if 
focusing on the patterns in the images were driving the connectivity differences, one might 
anticipate the visual regions would be more strongly implicated in the learning of non-social 
networks versus social networks. In fact, visual regions are more likely to have significantly 
greater node strength, connectivity with hippocampus, and connectivity with TPJ for social 
network task than for non-social network task. Future work could rule out this potential confound 
by instructing participants to focus on non-social but physically connected objects represented by 
the abstract images (e.g., the abstract images are symbols for subway stations). 

Third, the experimental paradigm that we employed requires dozens of trials per node to 
detect the cross-cluster surprisal effect, and we were therefore limited in the size and complexity 
of the social network that we could test. Real-world social networks are often much larger than 
those we study here, and they also tend to display much more complex patterns of connections 
(Hill and Dunbar, 2003). There is some evidence that learnability of network structures is robust 
to the size of the communities within the network (Karuza et al., 2019). But, other work on network 
learning in non-social domains suggests that whether a network is organized into clusters versus 
more random networks or networks with a lattice-like structure influences how well it is learned 
(Kahn et al., 2018). Future work could investigate how people learn other, more naturalistic, 
configurations of social networks. 

Fourth, one limitation of past neuroimaging work on how people learn relational 
information is that these studies have focused on activation in single brain regions or connectivity 
between pairs of brain regions (Hung et al., 2018; Lieberman et al., 2004; Schapiro et al., 2016, 
2013). Implicitly learning the edges and community structure of a complex network and building 
a mental representation of that network likely involves processing and coordination from many 
brain regions and systems (Schapiro et al., 2016). In supplementary analyses we did not find any 
significant differences in univariate brain activation for social versus non-social network learning, 
and the relationships between brain connectivity and cross-cluster surprisal were significant even 



after controlling for univariate brain activation (see Supplementary Results). These facts 
underscore the need for an explicitly multivariate approach that takes into account the distributed 
set of brain regions, and their interconnections, that support network learning. Here we address 
this need by capitalizing on recent advances in the nascent field of network neuroscience, which 
applies network science tools to understand how groups of brain regions interact to support both 
basic and complex cognitive processes across different temporal and spatial scales (Bassett and 
Sporns, 2017). Specifically, we examine network hubs, or brain areas that have strong connectivity 
to the rest of the brain, because they are thought to be central to coordinating communication 
between different brain systems and integrating information from different systems (van den 
Heuvel and Sporns, 2013).  
 
4.5 Conclusion 
 

In this study, we apply graph theory and network neuroscience tools to investigate how 
people learn information about social networks, including which communities each person in a 
social network belongs to. Navigating novel social contexts is a defining feature of modern social 
life (Rainie and Wellman, 2012) and learning information about how people in a new social group 
are connected to each other is an important facet of adapting to and fitting into these new social 
contexts (Balkundi and Harrison, 2006; Decostanza et al., 2012; Fitzhugh and DeCostanza, 2016; 
Liu and Chen, 2003). We found that people learned the community structure of both social and 
non-social networks, but the learning of these two types of networks was differentially associated 
with brain network architecture. Brain regions implicated in memory processes operate as hubs 
supporting learning community structure of both social and non-social networks, whereas brain 
regions implicated in social processing operate as hubs supporting learning of social (but not non-
social) communityß structure. Evidence supports the notion that social hubs integrate information 
from sensory systems, whereas non-social hubs in cognitive control systems are exerting top-down 
control of information processing. Broadly, our study provides a promising approach to determine 
how the brain supports social network learning, extending our knowledge about the impact of 
functional brain networks and social context on these learning processes. 
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