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Individual Di&erences in Learning Social and Non-Social Network
Structures

Abstract
How do people acquire knowledge about which individuals belong to diAerent cliques or communities? And
to what extent does this learning process diAer from the process of learning higher-order information about
complex associations between non-social bits of information? Here, we employ a paradigm in which the order
of stimulus presentation forms temporal associations between the stimuli, collectively constituting a complex
network. We examined individual diAerences in the ability to learn community structure of networks
composed of social versus non-social stimuli. Although participants were able to learn community structure of
both social and non-social networks, their performance in social network learning was uncorrelated with their
performance in non-social network learning. In addition, social traits, including social orientation and
perspective-taking, uniquely predicted the learning of social community structure but not the learning of non-
social community structure. Taken together, our results suggest that the process of learning higher-order
community structure in social networks is partially distinct from the process of learning higher-order
community structure in non-social networks. Our study design provides a promising approach to identify
neurophysiological drivers of social network versus non-social network learning, extending our knowledge
about the impact of individual diAerences on these learning processes.
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Abstract 

How do people acquire knowledge about which individuals belong to different cliques or 

communities? And to what extent does this learning process differ from the process of learning 

higher-order information about complex associations between non-social bits of information? 

Here, we employ a paradigm in which the order of stimulus presentation forms temporal 

associations between the stimuli, collectively constituting a complex network. We examined 

individual differences in the ability to learn community structure of networks composed of social 

versus non-social stimuli. Although participants were able to learn community structure of both 

social and non-social networks, their performance in social network learning was uncorrelated 

with their performance in non-social network learning. In addition, social traits, including social 

orientation and perspective-taking, uniquely predicted the learning of social community structure 

but not the learning of non-social community structure. Taken together, our results suggest that 

the process of learning higher-order community structure in social networks is partially distinct 

from the process of learning higher-order community structure in non-social networks. Our study 

design provides a promising approach to identify neurophysiological drivers of social network 

versus non-social network learning, extending our knowledge about the impact of individual 

differences on these learning processes. 

 Keywords: social network learning, statistical learning, social cognition 
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Individual Differences in Learning Social and Non-Social Network Structures 

 

Consider the important, yet daunting, challenge of learning a social network at a new job. 

Some connections are dictated by management structure, such as who supervises whom, project 

assignments, and administrative burden. Other connections may reflect personal connections 

from shared personal interests, proximity of offices, kids on the same sports team, or spouses 

who are friends from college. Individuals may also cluster together into cliques or communities 

based on these individual work or personal connections. This intricate web of human interactions 

reflects a rich social network of relationships between individuals. Navigating these interwoven 

layers of social connections is critical for success at the workplace but also in a much broader 

range of social interactions with friends, family and strangers (Balkundi & Harrison, 2006; 

Fitzhugh & DeCostanza, 2016; Jehn & Shah, 1997; Orvis & DeCostanza, 2016). Understanding 

how people learn relational information and update their representations of social network 

connections and communities may provide key insights into a broad range of important questions 

about human behavior. 

Research on statistical learning may provide insights into how people learn relational 

information. People are able to implicitly learn and pick up on spatial and temporal associations 

between objects grouped into communities (Halford, Wilson, & Phillips, 2010; Karuza, 

Thompson-Schill, & Bassett, 2016). Learning relational information about how objects or 

individuals are related to one another in space, time, or content is important for reasoning, 

language, and other higher cognitive processes (Halford, Wilson, & Phillips, 2010). This 

information enables individuals to form internal representations of the external world (Fiser & 

Aslin, 2002, 2005; Gómez, 2002; Jenny R. Saffran, Newport, & Aslin, 1996; Turk-Browne, 
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Isola, Scholl, & Treat, 2008) which facilitate efficient information processing (Fine, Jaeger, 

Farmer, & Qian, 2013; Karuza, Farmer, Smith, Fine, & Jaeger, 2014; Turk-Browne, Scholl, 

Johnson, & Chun, 2010). By learning the relationships between objects or between individuals, 

people understand visual patterns, produce language (Friederici, 2005), form knowledge 

(Bousfield, 1953), develop social intuition (Gopnik & Wellman, 2012), exercise logical 

deduction, and attain expertise in their line of work (Moon, Hoffman, Novak, & Canas, 2011). 

Since social networks are inherently about the relations among individuals, learning relational 

information also likely confers advantages for successfully understanding social structure.  

Collectively, relational data can be described as a network in which nodes might represent 

concepts, objects, or individuals, and in which edges might represent shared content, social 

relationships, or conditional probabilities (e.g., Moon et al., 2011). Yet, how the organization and 

content of such a network impacts our ability to learn the data is far from understood. Progress 

has been stymied by two critical limitations in both methodology and conceptualization. First, 

methodologically, research has predominantly focused on the learning of object pairs or concept 

pairs, rather than on the learning of higher-order, non-pairwise relationships present in real-world 

systems. Recent work suggests that human learners are sensitive to higher-order relational 

information beyond adjacent and immediately non-adjacent probabilities (Chan & Vitevitch, 

2010; Goldstein & Vitevitch, 2014; Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 

2013). Yet, experimentally manipulating and studying these higher-order relationships requires a 

quantitative framework in which to characterize the higher-order relationships. The lack of such 

a framework has challenged our ability to predict how people might learn such higher-order 

relational information.  
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Network science can provide a useful framework for characterizing complex patterns of 

relationships between pieces of information by conceptualizing the objects or concepts as a 

graph where the objects or concepts are nodes and relationships between the objects or concepts 

serve as edges (Newman, 2010). Network metrics can then be applied to describe higher-order 

patterns of relationships in the graph. For example, the degree to which words are clustered 

together into communities influences how easily a particular word is learned (Goldstein & 

Vitevitch, 2014). Moreover, individuals performing a basic perceptual learning task process 

stimuli more slowly if they lie in different communities (Karuza, Kahn, Thompson-Schill, & 

Bassett, 2017; Schapiro et al., 2013). Thus, the clustering or community structure is an important 

source of information about the higher-order relationships embedded in a network. 

Second, conceptually, progress has been hampered by the lack of an understanding of the 

similarities and differences between learning relational content among objects, such as abstract 

shapes or verbal commands, and learning relationships among individuals, such as colleagues or 

friends. Categorization research has found that people use different strategies when processing 

information and assigning information to categories, and these strategies seem to be relatively 

consistent across different types of information (Baldwin, 1992; Murphy & Medin, 1985; Reed 

& Friedman, 1973). For example, people use similar strategies when categorizing individuals 

into social communities when the information about individuals is presented using conceptual 

information (age, demographics, etc.) and perceptual information (facial features; Reed & 

Friedman, 1973). But it is not known whether categorizing people and categorizing non-social 

targets operate using similar mechanisms. 

Categories of objects or concepts are mathematically represented by sets, and are often 

colloquially referred to as clusters. If we connect these objects with edges indicating shared 
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features, then objects or concepts in the same category will tend to be more densely 

interconnected than objects or concepts in different categories. In this context, a community is a 

set of objects or concepts whose elements are more densely interconnected with one another than 

expected in a random network null model. Thus, people may adopt similar strategies when 

learning the categories of different types of information or learning the community membership 

of that information. 

However, much of the literature on categorization and statistical learning described above 

has focused on learning in one domain (social or non-social) and has not directly compared how 

people learn social versus non-social information. Although traditional views suggest that 

statistical learning of relational data may be relatively agnostic to data category (symbols, 

syllables, visual patterns; Reed & Friedman, 1973; Schapiro et al., 2013), emerging evidence 

demonstrates that category learning is influenced by salient goals (Chin-Parker & Birdwhistell, 

2017). For example, infants are better at learning object properties when given additional social 

cues (Wu, Gopnik, Richardson, & Kirkham, 2011). This work suggests that motivation 

influences how people process information and social content can further aid in learning 

individual features and categories. 

Moreover, neurobiological mechanisms are differentially recruited for learning and 

processing social versus non-social information (Meyer, Spunt, Berkman, Taylor, & Lieberman, 

2012; Meyer, Taylor, & Lieberman, 2015). The ability and motivation to process social 

information and non-social information is differentially associated with social traits, including 

perspective-taking (Meyer & Lieberman, 2016; Meyer et al., 2015). Furthermore, individuals 

who are more collectivistic tend to think about the self as being closely intertwined with others 

and are more sensitive to social relationships and contextual information (Chua, Boland, & 
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Nisbett, 2005; Kim & Markus, 1999; Markus et al., 1991; Nisbett, Peng, Choi, & Norenzayan, 

2001; Tompson, Lieberman, & Falk, 2015; Triandis & Gelfand, 1998), and may therefore be 

more likely to perceive relational information in social networks. It remains an open question 

whether there might be unique social, cognitive, or social-cognitive factors that predict learning 

of social versus non-social relational data, including higher-order community structure. 

 Here, we addressed these methodological and conceptual challenges by studying 

individual differences in the learning of higher order patterns of relationships. We defined social 

network learning to be the learning of inherently social relational data embedded on a network 

structure. We treated objects or individuals as nodes in a network, and we treated relationships 

(e.g., conditional probabilities or frequencies of co-occurrence) as edges in a network. For this 

study we focused on community structure (where nodes in a community are tightly 

interconnected to one another, with relatively few connections to nodes in other communities) as 

one type of higher-order network structure that could be important for individuals to learn.  

Across five studies, participants completed a basic perceptual judgment where the order 

in which the stimuli were presented reflected previously defined relationships between the 

stimuli instantiated in a clustered network architecture. The network architecture was never 

explicitly shown to the participants, but we hypothesized that that architecture could be inferred 

by the temporal associations between stimuli. More specifically, stimuli were presented such that 

the stimulus presented on each subsequent trial was connected in a network to the stimulus 

presented on the previous trial. We then manipulated the cover story for the stimuli. To study 

social network learning, we emphasized that the stimuli represented people; to study non-social 

network learning, we emphasized that the stimuli represented abstract images or rock formations 

(depending on the study). Importantly, we used the same visual representations across both 
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social and non-social tasks, and only changed the meaning ascribed to the stimuli. Using this task 

and a post-learning categorization task, we implicitly measured the degree to which participants 

learned the higher order community structure of social versus non-social networks, including the 

community assignment for each image.  

Using an experimental paradigm that bridges social psychology, cognitive science, and 

network engineering, we examined three broad questions about social and non-social network 

learning. First, some researchers have suggested that learning relational data operates in a 

manner that is independent from the type of data being learned (Schapiro et al., 2013). Thus, we 

hypothesized that people should learn the network structure for both social and non-social 

networks, and that this process should be indexed by our implicit measures of learning.  

Second, we asked whether there were meaningful differences in the behavioral markers 

of social and non-social network learning despite their broad similarities. Although people 

should be able to learn both social and non-social network structures, previous work has found 

that the processing of social information can be performed independently from the processing of 

non-social information (Meyer & Lieberman, 2016; Meyer et al., 2012, 2015). We therefore 

hypothesized that individual differences in performance on social tasks might only show weak 

correlations with performance on non-social tasks.  

Third, we investigated what traits predict social and non-social network learning. 

Previous work has demonstrated that processing social and non-social information is 

differentially associated with perspective-taking (Meyer et al., 2015), leading to our hypothesis 

that social traits (including perspective-taking and social orientation) should uniquely predict 

learning for social networks but not for non-social networks. Collectively, our results advance 
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understanding of how people process complex relational information, and how that processing is 

influenced by the type of information being learned. 

Overview 

We recruited a total of 349 participants across five studies. In the first four studies, we 

recruited participants through Amazon Mechanical Turk. In Study 5, we recruited participants 

from the University of Pennsylvania using an online subject recruitment website (Experiments @ 

Penn). The protocol for all five studies was approved by the Institutional Review Board of the 

University of Pennsylvania.  

 We first employed a between-subjects paradigm in Studies 1 and 2 to test for implicit 

signatures of network learning in social and non-social networks. In Studies 3 and 4, we then 

examined whether the group difference between social and non-social network learning could be 

replicated at the individual level using a within-subject design. Finally, Study 5 investigated 

whether individual differences in traits could account for variability in learning social versus 

non-social networks. 

In all five studies, participants viewed a sequence of fractal images and completed a 

rotation detection task where they judged whether each image was rotated 90 degrees. Each 

image was unique, and for each participant, each image was randomly assigned to a network 

node. The sequence of fractal images that each participant saw was generated by a random walk 

through the network (see Figure 1). This random walk ensured that the probability of one image 

being presented after the current trial was equivalent across trials and determined by the network 

structure. Each node was connected to exactly four other nodes, ensuring equivalent transition 

probabilities. The structure of transition probabilities is an important cue signaling event 

structure, which can influence how quickly participants learn information (Fiser & Aslin, 2005; 
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Saffran, Aslin, & Newport, 1996; Turk-Browne, Jungé, & Scholl, 2005). Therefore, keeping the 

network structure uniform to remove transition probabilities as a potential source of information 

about which trials to expect next is important for testing whether participants can learn higher-

order network topology.  

 To measure implicit learning of the network structure, we computed differences in RT 

between pre-transition trials that occurred immediately before a transition from one cluster to 

another and post-transition trials that occurred immediately after a transition from one cluster to 

another. If participants learn the cluster membership, then they should anticipate seeing a within-

cluster image rather than an image from another cluster. This surprisal effect should slow 

participants’ response to the rotation judgment on the next trial (Karuza et al., 2017; Schapiro et 

al., 2013). The first two studies also included an odd-man-out test that measured learning based 

on categorization of images (described below) to provide additional evidence that participants’ 

responses were influenced by the network structure. The fifth study included two trait 

questionnaires on social orientation and perspective-taking to examine individual differences that 

account for variability between social and non-social network learning. 

Study 1 

In the first study, we used a between-subjects design to test for implicit signatures of 

network learning in social and non-social networks. The primary goal of Study 1 was to establish 

that participants are capable of learning community structure for both social and non-social 

relational information. Intuitively, slower RT on post-transition trials and greater accuracy on the 

odd-man out task would indicate that individuals successfully learned the network structure. In 

this task, participants were presented with three images at a time and instructed to select one of 

the three images that “did not fit” with the other two. Importantly, two of the images on each trial 
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were from the same cluster (i.e., same cluster nodes) and the third image (i.e., distant node) was 

at least three steps away from the other two images.  

Study 1 Method 

Participants 

For the first study, we recruited 76 participants (37 non-social, 39 social) using Amazon 

Mechanical Turk. We excluded two participants who had accuracy lower than expected by 

chance (which we defined as 70%, given the proportion of rotated and unrotated trials in the 

task). None of the results in this study or any other study changed when participants with poor 

performance were included in analyses. Total compensation for a participant who completed all 

phases of either study ranged from $6.25-$9.00 (depending on performance bonuses). 

Procedure 

In Study 1, participants viewed a sequence of fractal images that we created using the 

Qbist filter (Loviscach & Restemeier, 2001) in the GNU Image Manipulation program (v.2.8.14; 

www.gimp.org), converted to grayscale, and then matched for average brightness. Each image 

was unique, and for each participant, each image was randomly assigned to a network node. The 

sequence of fractal images that each participant saw was generated by a random walk through 

the network (see Figure 1). Images were presented for 1500 ms. To ensure that participants were 

attending to the stream of images, they were instructed to press the J key with their right index 

finger if the image was rotated (30% of trials) and to press the F key with their left index finger if 

the image was not rotated (70% of trials). The task was broken into 5 segments and participants 

were given a break between segments to reduce fatigue. 

Participants completed a brief training procedure prior to starting the rotation detection 

task. First, they were shown each image in its non-rotated orientation. Then, they were shown the 
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rotated and non-rotated versions side by side and asked to pick the non-rotated image. Next, they 

completed a practice version of the rotation detection task, where they saw each image once in 

random order. During the task, participants were also given audio feedback to assist learning the 

rotation of images. Specifically, they heard a high audio tone when they made an incorrect 

response and a low audio tone when they responded too slowly (greater than 1500 ms). 

The network structure consisted of three clusters each composed of five nodes, and 

participants viewed a sequence of 1500 fractal images. Participants in the non-social condition 

were simply told that they would be judging whether abstract images were rotated. In the social 

condition, participants were told that “the images that you will see are taken from an online 

social media platform where people can choose one of these images as their avatar to represent 

themselves, much like you might use a photo to represent yourself on Facebook or Twitter. 

While completing the task (described in more detail on the next page), please make sure you 

focus on the people these avatars represent.” 

After performing the image rotation judgment task, participants completed an odd-man-

out test. On each trial, participants were simultaneously presented with three images in random 

order; two of the images represented nodes in the same cluster, and one image was drawn from 

nodes in a different cluster. Participants were told that the stream of images they just saw in the 

exposure phase adhered to a pattern, and they were instructed to select via button-press one of 

the three images that “did not fit” with the other two. We picked sets of images such that none of 

the images were boundary nodes (nodes that are connected to their own community and also 

connected to another community), and the probability of each image being presented with other 

images was equivalent. Each set of three images was then presented in all permuted orders 

giving 6 trials per set and 54 trials total. 
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Data Exclusions 

To examine differences in RT due to the transition from one cluster to another, we 

excluded incorrect trials (11.2% data loss) and rotation trials (23.7% data loss) as well as trials 

with implausible response times (i.e., less than 100 ms or greater than 1500 ms; less than 1% 

data loss). We also excluded outlier data points greater than 3 standard deviations from the mean 

response time (less than 1% data loss). We also excluded a small number of trials (less than 1% 

data loss) where the random walk transitioned from one cluster to another and then immediately 

transitioned back to the first cluster, which resulted in the middle trial counting as both a pre-

transition and post-transition trial. There were no significant differences in rates of data excluded 

for social versus non-social conditions. 

Statistical Analysis 

In our primary analyses, we tested whether previously identified indices of network 

learning in non-social domains might also index the learning of network structure in the social 

domain. Specifically, we examined cross-cluster differences in RT for the pre-transition and 

post-transition trials using linear mixed effects models, implemented in R (v. 3.2.2; R 

Development Core Team, 2015) using the lmer() function (library lme4, v. 1.1-10). Intuitively, 

slower RT on post-transition trials would indicate that individuals successfully learned the 

community structure of the network. Linear mixed effects models are ideal for testing repeated 

measures designs which include both within-subject and between-subject variables (Bates, 

Mächler, Bolker, & Walker, 2015). Importantly, linear mixed effects models also allow us to 

account for between-subject differences in RT. 

The primary mixed effects model in Study 1 included node type (pre-transition versus 

post-transition), condition (social versus non-social), trial number (standardized), and the two-
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way and three-way interactions between these variables, as predictors of RT (with node type and 

trial number included as within-subjects variables and with condition included as a between-

subjects variable). For all models, we included the fullest set of random effects that allowed the 

model to converge, which included a random intercept for participant and a by-participant 

random slope for trial number and node type. All predictors were mean-centered to reduce 

multicollinearity (all rs<.280). We then conducted simple effects analyses to examine whether 

the effect of node type was significant in both the social and non-social tasks. We also ran 

additional analyses including repetition priming effects (number of times the image was 

presented in the previous 10 trials, number of trials since the image was last presented) as 

additional variables in a mixed effects model. Including these variables did not alter the 

significance of the effects reported below, and thus we focus our discussion on the first set of 

analyses. 

We also tested whether participants demonstrated network learning using the odd-man 

out task. In this task, participants were shown sets of three images where two images were in the 

same cluster and the third image was in a different cluster and at least 3 steps away from the 

other two images. Thus, if participants learned the network structure (either community structure 

or distance-based features of the network), they should be more likely to indicate that the image 

that was in a different cluster “did not fit” with the other two. To test for this behavior, we 

computed the percentage of trials where participants chose the different-cluster image and ran a 

one-sample t-test to examine whether this percentage was significantly greater than chance 

(33%). We tested this difference in percentage for each condition separately, and also ran a two-

sample t-test to examine whether accuracy differed for the social and non-social tasks. 

Study 1 Results 
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Commonalities in Social Versus Non-Social Network Learning 

 First, we investigated whether participants were able to learn the network architecture 

implicit in the temporal contingencies between stimuli. We fit a linear mixed effects model with 

node type (pre-transition versus post-transition), condition (social versus non-social), and trial 

number as predictor variables, using RT as the dependent variable. There was a significant main 

effect of node type (pre-transition versus post-transition), such that participants were 

significantly slower at responding to the post-transition trial than to the pre-transition trial for 

both social and non-social networks (see Table 1 and Figure 2A). There was no main effect of 

condition (social versus non-social), nor was the effect of node type moderated by condition. 

Follow-up analyses examining the cross-cluster surprisal effect for each condition separately 

confirmed that participants showed a significant cross-cluster surprisal effect in both conditions. 

These results suggest that participants were surprised when the visual stream transitioned from 

one cluster to another, demonstrating that they learned the network structure of both the social 

and non-social networks. 

 Interestingly, we also found a significant three-way interaction between node type (pre-

transition versus post-transition), condition (social versus non-social), and trial number (see 

Figure 2B). Participants demonstrated smaller cross-cluster surprisal effects at the beginning of 

the social network learning task (versus non-social network learning task) but this difference 

between social and non-social conditions diminished over time, such that the cross-cluster 

surprisal effects were equivalent at the end of the task. These results suggest that it may be more 

difficult to learn the social networks than the non-social networks, but that this effect disappears 

after sufficient practice. 
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A second measure of network learning is given by the participant’s categorization 

accuracy on the odd-man out task. Participants were significantly more likely to indicate that the 

distant node “did not fit” with the other two same-cluster nodes in both the social task (M=0.415, 

SD=0.134, t(38)=3.95, p<0.001) and in the non-social task (M=0.386, SD=0.127, t(34)=2.61, 

p=.013), and there was no significant difference between the two conditions (t(71.73)=0.93, 

p=.355). These results provide additional evidence that participants learned the network structure 

of both social and non-social networks. 

Study 1 Discussion 

Study 1 provides converging evidence across two tasks that participants are capable of 

learning community structure of both social and non-social networks. Importantly, participants 

show similar signatures of learning across the two tasks. The primary difference between the two 

results is that participants in the social condition exhibited a stronger change in learning rate over 

the course of the task. This finding suggests that it may be more difficult to learn the social 

networks than non-social networks, but that this effect goes away after sufficient practice. There 

are, however, a few limitations to this first study which we aim to address in Study 2. Study 1 did 

not include a cover story and it is possible that differences in learning rate between tasks is 

simply due to added cognitive load of completing the image rotation judgment while thinking 

about the images as people. Nor did it include a test of how much participants were thinking 

about the abstract images as people in each condition. In Study 2, we aimed to correct for these 

limitations and test the generalizability of the results from Study 1. 

Study 2 

The second study is identical to the first study, except that 1) participants learned a different 

number of communities (two instead of three), 2) participants received a more elaborate cover 
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story, and 3) participants were given a post-task manipulation test to measure whether they were 

more likely to think about the social stimuli as people. The purpose of this second study was to 

shorten the task and test for generalization of results across variable network size, explicitly 

control for potential differences in cognitive load, and directly test whether participants were 

more likely to think about the social stimuli as people. 

Study 2 Method 

Participants 

For Study 2, we recruited 82 participants (40 non-social, 42 social) from Amazon 

Mechanical Turk. We excluded three participants who had accuracy lower than chance (70%). 

Total compensation for a participant who completed all phases of either study ranged from 

$6.25-$9.00 (depending on performance bonuses). 

Procedure 

The procedure for Study 2 was identical to Study 1, with three notable changes. First, we 

reduced the network size from 15 nodes to ten nodes to shorten the task and test for 

generalization of results across variable network size. In Study 2, the network structure consisted 

of two clusters each composed of five nodes, and participants viewed a sequence of 1000 fractal 

images. The only difference between the odd-man out task in Study 2 was that it had fewer trials 

than that in Study 1. Due to the smaller network size, there were also fewer potential unique 

combinations for the odd-man out task, and the odd-man out task therefore had fewer trials. Each 

set of three images in the odd-man out task was presented in all permuted orders giving 6 trials 

per set and 36 trials total. 

Second, participants also read a cover story about the images in the non-social condition. 

The purpose of this manipulation in Study 2 was to explicitly control for potential differences in 



SOCIAL VERSUS NON-SOCIAL NETWORK LEARNING  

 

18 

cognitive load created by instructing participants to think about the images as either people or 

rock formations. In the social condition, participants received the same instructions as in the first 

study, and were told that “the images that you will see are taken from an online social media 

platform where people can choose one of these images as their avatar to represent themselves, 

much like you might use a photo to represent yourself on Facebook or Twitter. While completing 

the task (described in more detail on the next page), please make sure you focus on the people 

these avatars represent.” In the non-social condition, participants were told that the “images were 

abstract patterns frequently found in rock formations. Some of these patterns are visible to the 

naked eye, whereas others are only visible with a microscope. These rock patterns are often 

created by natural forces, including tectonic plate shifts, wind and water erosion, and volcanic 

activity.” To enhance the cover story, we also had participants complete a pre-exposure choice 

where they were instructed to pick an image to serve as their avatar representing themselves 

(social condition) or to pick their favorite rock formation (non-social). 

Third, participants completed a post-exposure rating task where they reported how much 

they thought about the images as people on a 5-point scale. We expected that participants would 

report thinking about the images as people more in the social condition than in the non-social 

condition. 

Data Exclusions 

Data exclusion criteria were identical to Study 1 and exclusion rates were similar 

(incorrect trials: 8.9%, rotation trials: 24.7%, implausible response times: less than 1%, outlier 

response times: less than 1%, and trials where the middle trial counted as both a pre-transition 

and post-transition trial: less than 1%). There were no significant differences in data loss across 

conditions.   
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Statistical Analysis 

Analyses for Study 2 were identical to the analyses for Study 1. 

Study 2 Results 

Confirming Attributions of Social Meaning to Fractal Images 

 To interpret the results of our study as relating to social versus non-social network 

learning, it is imperative to first demonstrate that participants attributed social meaning to the 

fractal images in the social condition more so than to the fractal images in the non-social 

condition. To address this question, we tested whether participants were significantly more likely 

to report thinking about the images as people in the social condition than in the non-social 

condition. We found that there was a significant difference in post-task ratings (t(75.01)=3.21, 

p=.002), such that participants reported thinking about the images as people more frequently in 

the social condition (M=2.97, SD=1.19) than in the non-social condition (M=2.00, SD=1.48). 

These results suggest that participants were indeed more likely to think about the abstract images 

as people when told that they represented online avatars. 

Commonalities in Social Versus Non-Social Network Learning 

 Next, we investigated whether participants were able to learn the network architecture 

implicit in the temporal contingencies between stimuli. We fit a linear mixed effects model with 

node type (pre-transition versus post-transition), condition (social versus non-social), and trial 

number as predictor variables, using RT as the dependent variable. Replicating the results from 

Study 1, there was a significant main effect of node type, such that participants were 

significantly slower at responding to the post-transition trial than to the pre-transition trial for 

both social and non-social networks (see Table 2 and Figure 3A). There was again no main effect 

of condition (social versus non-social), nor was the effect of node type moderated by condition. 
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Follow-up analyses examining the cross-cluster surprisal effect for each condition separately 

confirmed that participants showed a significant cross-cluster surprisal effect in both conditions. 

 Replicating Study 1, we also found a significant three-way interaction between node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number (see 

Figure 3B). There was a stronger positive slope for social networks, such that participants 

demonstrated smaller cross-cluster surprisal effects at the beginning of the social network 

learning task (versus non-social network learning task), but by the end of the task the surprisal 

effect was actually larger in the social networks. 

A second measure of network learning is given by the participant’s categorization 

accuracy on the odd-man out task. Replicating the results from Study 1, participants were 

significantly more likely to indicate that the distant node “did not fit” with the other two same-

cluster nodes in the social task (M=0.413, SD=0.216, t(37)=2.37, p=.023) and marginally more 

likely to indicate that the distant node “did not fit” with the other two same-cluster nodes in the 

non-social task (M=0.375, SD=0.169, t(40)=1.69, p=.099), and there was no significant 

difference between the two conditions (t(70.05)=0.87, p=.386). 

Study 2 Discussion 

 Study 2 replicates Study 1 by showing that participants slow their responses following a 

transition from one cluster to another and are more likely to group images from the same 

community together. We also find that participants once again were slower at learning the social 

network structure, despite adding a cover story to the non-social task to try to account for 

differences in cognitive load. Taken together, these results provide robust evidence that 

individuals are capable of learning community structure of both social and non-social networks. 

One limitation of both Study 1 and Study 2 is that they employed a between-subjects design. A 
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stronger test of the potential overlap or independence of social and non-social network learning 

would involve having participants complete both tasks, to directly compare each individual’s 

ability to learn community structure of both social and non-social networks. 

Study 3 

In our third study, we complemented the between-subject approach of the first two 

studies with a within-subject approach. Here, we directly examined whether individuals with 

better performance on the non-social network learning task also displayed better performance on 

the social network learning task. To the extent that these skills are independent, we would expect 

minimal relationship between performance on one task and performance on the other task. In 

contrast, if a common set of mechanisms underpins all types of network learning, then we would 

expect that performance on these two tasks would be correlated across subjects. Importantly, 

there could also be individual differences in motivation to learn social versus non-social 

networks, where some individuals are more motivated to learn social relationships than others. 

To reduce any potential participant fatigue induced by completing two 25-minute image rotation 

tasks (required due to the within subject design), we did not include the odd-man out task in this 

study. 

Study 3 Method 

Participants 

For Study 3, we recruited 65 participants from Amazon Mechanical Turk. The order of 

the social and non-social conditions was counterbalanced across participants. We excluded one 

participant who had accuracy lower than chance (70%). Total compensation for a participant 

who completed all phases of either study variant ranged from $6.25-$9.00 (depending on 

performance bonuses). 
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Procedure 

The procedure for Study 3 blended the procedures from Study 1 and Study 2 while 

adapting the task for a within-subject paradigm. As in the first two studies, participants 

completed a rotation detection task where the stimulus order followed a random walk along a 

modular community. Study 3 used the non-social cover story (abstract images) from Study 1, but 

the same community structure as Study 2. We used 10 unique fractals for each condition, and the 

images were randomly assigned to the social and non-social network for each participant. Images 

in each condition were organized into two clusters of five images, and participants completed 

1,000 trials per condition. 

Designing a within-subject version of the image rotation task required a few key 

modifications. First, we removed the odd-man out task to reduce fatigue for participants, since 

each condition of the image rotation task took 25 minutes. Second, to increase the degree to 

which subjects differentiated between the social and non-social conditions, we instructed 

participants as follows in the second variant: “In this study, we are interested in how the source 

and context of abstract patterns influences their representation. For each part of the study, try to 

focus on the instructions and type of images that you are looking at IN THAT PART.” 

Data Exclusions 

Data exclusion criteria were identical to Studies 1 and 2 and exclusion rates were similar 

(incorrect trials: 9.2%, rotation trials: 24.5%, implausible response times: less than 1%, outlier 

response times: less than 1%, and trials where the middle trial counted as both a pre-transition 

and post-transition trial: less than 1%). There were no significant differences in data loss across 

conditions.   

Statistical Analysis 
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As in the first two studies, we tested cross-cluster differences in RT for the pre-transition 

and post-transition trials using linear mixed effects models. The only difference between the 

mixed effects model in Study 3 and earlier studies is that condition is now treated as a within-

subjects variable. We also ran an additional analysis including condition order as a between-

subjects variable to the model to test whether the order in which participants completed the task 

influenced how they processed the images. Including condition order did not alter the 

significance of the effects reported below, and thus we focus our discussion on the first model.  

Using the within-subjects design of Study 3, we were also able to test whether individuals 

who performed better in the non-social network learning condition also performed better in the 

social network learning condition. To isolate cross-cluster surprisal from individual differences 

in response time, we converted response times to z-scores (within-subject) and then computed 

the average difference in standardized RT for each subject. We then tested whether there was a 

significant correlation between the mean standardized RT difference between pre-transition and 

post-transition trials for social and non-social network runs. We also ran linear regression 

analyses adding condition order as a covariate to test whether the relationship between social and 

non-social network learning differed depending on the order in which participants completed the 

task. Finally, we also ran these analyses without first standardizing the response times within-

subject and found the same effects when testing whether there was a significant correlation 

between the mean RT difference between pre-transition and post-transition trials for social and 

non-social network conditions. 

Study 3 Results 

Confirming Attributions of Social Meaning to Fractal Images 
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 We first tested whether participants were significantly more likely to report thinking 

about the images as people in the social condition than in the non-social condition, in order to 

demonstrate that participants attributed social meaning to the fractal images in the social 

condition more so than to the fractal images in the non-social condition. Consistent with the 

effects from Study 2, we also found a significant difference in post-task ratings in Study 3 

(t(63)=4.34, p<.001), such that participants reported thinking about the images as people more 

frequently in the social condition (M=2.77, SD=1.16) than in the non-social condition (M=2.22, 

SD=1.33). 

Commonalities in Social Versus Non-Social Network Learning 

 Next, we investigated whether participants were able to learn the community structure 

implicit in the temporal contingencies between stimuli. To address this question, we examined 

RT differences for pre-transition and post-transition trials; intuitively, slower RT on post-

transition trials would indicate that individuals successfully learned the network structure. We fit 

a linear mixed effects model with node type (pre-transition versus post-transition), condition 

(social versus non-social), and trial number as predictor variables, using RT as the dependent 

variable. Replicating the effects from Studies 1 and 2, there was a significant main effect of node 

type, such that participants were significantly slower at responding to the post-transition trial 

than to the pre-transition trial for both social and non-social networks (see Table 3 and Figure 

4A). Replicating Studies 1 and 2, there was again no main effect of condition (social versus non-

social), nor was the effect of node type moderated by condition. Follow-up analyses examining 

the cross-cluster surprisal effect for each condition separately confirmed that participants showed 

a significant cross-cluster surprisal effect in both conditions. 
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 The rate of learning effect found in Studies 1 and 2 did not replicate in Study 3. 

Specifically, the three-way interaction between node type (pre-transition versus post-transition), 

condition (social versus non-social), and trial number was not significant (see Figure 4B). This 

result diverges from the previous results found in Studies 1 and 2, where participants were 

slower in the social network learning condition. This effect might be in part due to the within-

subject design and participants becoming more familiar with the task from the first version they 

completed to the second version, which reduces changes in cross-cluster surprisal over time. 

Individual Differences in Social Versus Non-Social Network Learning 

 Next, we turned to an examination of individual differences in social versus non-social 

network learning. Specifically, we were interested in determining the degree to which people 

who are good at learning one type of network are also good at learning the other type of network. 

If we observed a correspondence in performance, it would suggest that the mechanism of 

learning social networks was similar to that of learning non-social networks. Conversely, if there 

was weak or no correspondence in performance, it would suggest the existence of distinct 

mechanisms or distinct motivations underlying social versus non-social network learning. To 

determine which explanation was supported by the data, we examined the correlation between 

each individual’s cross-cluster surprisal effect in the social and non-social networks.  

We observed no correlation between learning on the social and non-social tasks (r(62)=-

.026, p=.841; see Figure 4C). These data are consistent with the notion that there may be distinct 

processes underlying social versus non-social network learning, either in terms of motivation or 

in terms of learning mechanism, and that different components may be stronger in one person 

than another.  In other words, even though we observe no aggregate differences in learning social 
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and non-social networks for the group as a whole, different people efficiently learn social and 

non-social network information. 

Importantly, these results held even after controlling for condition order. The interaction 

between condition and condition order was not significant (b=-0.27, SE=0.28, t(60)=-0.96, 

p=.340), and the association between social and non-social network learning was not significant 

when participants saw the social task first (r(31)=-.139, p=.442) and the non-social task first 

(r(29)=.109, p=.569). These results suggest that the lack of an association is not due to 

differences in condition order. 

Study 3 Discussion 

 Study 3 shows that our cross-cluster surprisal measure of social and non-social network 

learning generalizes to a within-subjects task where participants complete both a social and non-

social image rotation task. We did not replicate the differences in learning rate found in Studies 1 

and 2, potentially due to the within-subject design and participants becoming more familiar with 

the task from the first version they completed to the second version. Importantly, this within-

subjects design also allowed us to test whether individuals who were better at learning 

community structure in one type of network were also better at learning community structure in 

the other type of network. We found that there was no correlation between cross-cluster surprisal 

in the social and non-social tasks, such that people who were better at the social task were not 

necessarily better at the non-social task, and vice versa.  This result may suggest that social and 

non-social network learning involve at least partially distinct mechanisms or motivation. This 

study suffered from the same limitation as Study 1, and in order to control for variation in 

cognitive load due to the social cover story, we ran an additional study with the same within-

subjects design as Study 3, but adding in the rock formation cover story.  
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Study 4 

Study 4 used an identical procedure as Study 3, except that participants were given the 

rock formation cover story for the non-social condition. This allowed us to test whether 

individuals who were better at non-social network learning were also better at social network 

learning while controlling for cognitive load induced by the cover story. To reduce order effects 

and bleed over of the cover story from the first task to the second task, we also included 

additional text between tasks to encourage participants to ignore the previous task when 

completing the second task. 

Study 4 Method 

Participants 

In Study 4, we recruited 94 participants from Amazon Mechanical Turk. The order of the 

social and non-social conditions was counterbalanced across participants. We excluded five 

participants who had accuracy lower than chance (70%). Total compensation for a participant 

who completed all phases of either study variant ranged from $6.25-$9.00 (depending on 

performance bonuses). 

Procedure 

The procedure for Study 4 was identical to Study 3, with two notable changes. First, we 

added the rock formation cover story back in, in order to help account for differences in 

cognitive load due to the cover story. Second, to increase the degree to which subjects 

differentiated between the social and non-social conditions, we instructed participants as follows 

in the second variant: “In this study, we are interested in how the source and context of abstract 

patterns influences their representation. For each part of the study, try to focus on the instructions 

and type of images that you are looking at IN THAT PART.” 
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Data Exclusions 

Data exclusion criteria were identical to Studies 1-3 and exclusion rates were similar 

(incorrect trials: 10.4%, rotation trials: 21.9%, implausible response times: less than 1%, outlier 

response times: less than 1%, and trials where the middle trial counted as both a pre-transition 

and post-transition trial: less than 1%). There were no significant differences in data loss across 

conditions.   

Statistical Analysis 

Analyses in Study 4 were identical to analyses in Study 3. 

Study 4 Results 

Confirming Attributions of Social Meaning to Fractal Images 

 We first tested whether participants were significantly more likely to report thinking 

about the images as people in the social condition than in the non-social condition, in order to 

demonstrate that participants attributed social meaning to the fractal images in the social 

condition more so than to the fractal images in the non-social condition. Replicating the results 

from Studies 2 and 3, we found a significant difference in post-task ratings (t(88)=5.13, p<.001), 

such that participants reported thinking about the images as people more frequently in the social 

condition (M=2.86, SD=1.13) than in the non-social condition (M=2.26, SD=1.32). 

Commonalities in Social Versus Non-Social Network Learning 

 Next, we investigated whether participants were able to learn the community structure 

implicit in the temporal contingencies between stimuli. We fit a linear mixed effects model with 

node type (pre-transition versus post-transition), condition (social versus non-social), and trial 

number as predictor variables, using RT as the dependent variable. Replicating the results from 

Studies 1-3, there was a significant main effect of node type, such that participants were 
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significantly slower at responding to the post-transition trial than to the pre-transition trial for 

both social and non-social networks (see Table 4 and Figure 5A). There was again no main effect 

of condition (social versus non-social). Unlike prior studies, we did find a two-way node x 

condition interaction, such that participants showed greater cross-cluster surprisal in the non-

social than the social condition.  

Follow-up analyses examining the cross-cluster surprisal effect for each condition 

separately confirmed that participants showed a significant cross-cluster surprisal effect in both 

conditions, although this effect was larger in the non-social condition than in the social 

condition. Once again, we found that the three-way interaction between node type (pre-transition 

versus post-transition), condition (social versus non-social), and trial number was not significant 

(see Figure 5B). Thus, this interaction is significant in both between-subjects design studies but 

not significant in both within-subjects design studies.  

Individual Differences in Social Versus Non-Social Network Learning 

 Next, we turned to an examination of individual differences in the learning of community 

structure in social versus non-social networks. Specifically, we were interested in determining 

the degree to which people who are good at learning community structure in one type of network 

are also good at learning the community structure in other type of network. Replicating the effect 

from Study 3, we observed no correlation between learning on the social and non-social tasks 

(r(87)=.157, p=.141; see Figure 5C). These data are consistent with the notion that there may be 

distinct processes underlying the learning of community structure in social versus non-social 

networks, either in terms of motivation or in terms of learning mechanism. 

Somewhat surprisingly, these results were influenced by condition order. There was a 

significant interaction between condition and condition order (b=-0.47, SE=0.21, t(85)=-2.26, 
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p=.027), such that the association between learning on social and non-social networks was not 

significant when participants performed the social task first (r(47)=-.110, p=.452), but there was 

a significant correlation when participants performed the non-social task first (r(38)=.400, 

p=.011). Because this effect does not hold up in Study 3 and represents a small subset of the 

data, we cannot make a strong statement about this effect. 

Study 4 Discussion 

 Taken together, all four studies discussed so far provide compelling evidence that 

participants learn community structure of both social and non-social networks. Importantly, 

Studies 3 and 4 also show that there is little association between learning rates within-subjects, 

suggesting that individuals who learn community structure in non-social networks are not also 

better at learning community structure in social networks, and vice versa. Interestingly, the one 

scenario where we did see an association between performance on social and non-social 

networks was when participants performed the non-social task first and were given a clear cover 

story for both tasks. Study 4 is also the only study that shows a significant difference in cross-

cluster surprisal between the social and non-social conditions. However, this effect does not 

replicate in any of the other studies and a meta-analysis (described below) reveals this effect is 

not significant across studies. Further, given that our evidence so far for distinct mechanisms 

leading to social and non-social community learning is based on a lack of correlation (and hence 

limits our ability to make strong inferences), in the next study, we attempt to more directly show 

that different types of people are most efficient in learning community structure on social versus 

non-social networks. 

Study 5 Introduction 
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Finally, our fifth study investigated whether learning the community structure of social 

and non-social networks is influenced by social traits. This study was identical to Study 4, with 

two notable changes. First, participants completed individual difference questionnaires designed 

to test social traits, including social orientation and perspective taking. The acquisition of this 

data allows us to more directly test whether social and non-social network learning are 

influenced by distinct processes. Second, to accommodate the longer study duration, we chose to 

recruit participants from the Philadelphia area who then completed the task in the lab. This 

change allowed us to more carefully monitor subject fatigue and replicate the earlier studies in a 

more controlled environment. 

Study 5 Method 

Participants 

We recruited 33 participants from the University of Pennsylvania who completed the 

study in an on-site laboratory, and we excluded 2 participants due to missing data (server 

malfunction) and 1 participant who had accuracy lower than chance (70%). Total compensation 

for Study 5 ranged from $20-$30 (depending on performance bonuses). 

Procedure 

The procedure for Study 5 was identical to Study 4: it included cover stories for both the 

social and non-social conditions, and it also included extra instructions to encourage participants 

to differentiate between the instructions for the two conditions. The important new feature of this 

study was that we asked participants to complete two questionnaires measuring individual 

differences in social orientation and perspective-taking. 

 Social Orientation. The Triandis Individualism-Collectivism Scale (Triandis & Gelfand, 

1998) consists of 15 items measured on a 7-point scale. It is designed to assess the extent to 
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which an individual thinks about himself or herself as independent of and distinct from others (8 

items) versus the extent to which an individual thinks about himself or herself as interdependent 

on and connected to others (7 items). Sample independent items include, “I'd rather depend on 

myself than others” and “My personal identity, independent of others, is very important to me” 

(M=4.75, SD=0.75 α=.700). Sample interdependent items include, “I feel good when I cooperate 

with others” and “It is important to me that I respect the decisions made by my groups” (M=5.43, 

SD=0.65, α=.670). For our composite social orientation score, we reverse coded interdependent 

items and computed the average response across all 15 items for each participant (M=3.73, 

SD=0.56, α=.722). 

 Perspective-Taking. The Interpersonal Reactivity Index (Davis, 1980) consists of 28 

items measured on a 5-point scale. It further consists of four subscales measuring different 

components of empathy, including perspective-taking, fantasy, empathic concern, and personal 

distress. In these analyses, we focused on the most cognitive component – perspective-taking – 

since we did not hypothesize any involvement of fantasy or emotional responses in the learning 

of community structure in networks. Sample items include, “I try to look at everybody's side of a 

disagreement before I make a decision” and “I sometimes try to understand my friends better by 

imagining how things look from their perspective”. Two of the seven items in the perspective-

taking subscale were reverse coded, and we computed the average response for each participant 

(M=4.23, SD=0.67, α=.733). 

Data Exclusions 

Data exclusion criteria were identical to Studies 1-4 and exclusion rates were similar 

(incorrect trials: 8.7%, rotation trials: 26.2%, implausible response times: less than 1%, outlier 

response times: less than 1%, and trials where the middle trial counted as both a pre-transition 
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and post-transition trial: less than 1%). There were no significant differences in data loss across 

conditions.  

Statistical Analysis 

As in Studies 3 and 4, we tested cross-cluster differences in RT for the pre-transition and 

post-transition trials using mixed effects modeling and tested whether individuals who are better 

at learning the community structure of non-social networks were also better at learning the 

community structure of social networks. However, information about task order for Study 5 was 

lost due to a technical malfunction, and therefore we were not able to analyze whether task order 

influenced the reported effects.  

Using the additional individual differences measures collected in Study 5, we were also 

able to test whether differences in social orientation and perspective-taking accounted for 

differences between learning conditions. To examine individual differences in the learning of 

community structure in social and non-social networks, we first converted RT to z-scores 

(within-subject) and computed the average standardized cross-cluster surprisal effect separately 

for the social task and the non-social task. We then fit linear mixed effects models with condition 

(social versus non-social) and scores on a single trait measure (either social orientation or 

perspective-taking) as predictor variables, and with standardized cross-cluster surprisal as a 

dependent variable. 

Study 5 Results 

Confirming Attributions of Social Meaning to Fractal Images 

 First, we tested whether participants were significantly more likely to report thinking 

about the images as people in the social condition than in the non-social condition. Consistent 

with the effects from Studies 2-4, we also found a significant difference in post-task ratings in 
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Study 5 (t(29)=2.90, p=.007), such that participants reported thinking about the images as people 

more frequently in the social condition (M=2.33, SD=0.99) than in the non-social condition 

(M=1.80, SD=1.06). 

Commonalities in Social Versus Non-Social Network Learning 

 Next, we investigated whether participants were able to learn the network architecture 

implicit in the temporal contingencies between stimuli. In order to test whether participants were 

significantly slower on post-transition trials than pre-transition trials, we fit a linear mixed effects 

model with node type (pre-transition versus post-transition), condition (social versus non-social), 

and trial number as predictor variables, using RT as the dependent variable. Consistent with the 

results from Studies 1-4, we found that there was a significant main effect of node type, such that 

participants were significantly slower at responding to the post-transition trial than to the pre-

transition trial for both social and non-social networks (see Table 5 and Figure 6A). Moreover, 

there was no main effect of condition, nor was the cross-cluster surprisal effect moderated by 

condition. Follow-up analyses examining the cross-cluster surprisal effect for each condition 

separately confirmed that participants showed a significant cross-cluster surprisal effect in both 

conditions. As in Studies 3 and 4, we did not find a significant interaction between node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number (see 

Figure 6B). This 3-way interaction is significant in both between-subjects design studies but not 

significant in the three within-subjects design studies. 

Individual Differences in Social Versus Non-Social Network Learning 

 Next we turned to an examination of individual differences in learning the community 

structure of social versus non-social networks. As in Studies 3 and 4, we were interested in 

determining the degree to which people who are good at learning community structure in one 
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type of network are also good at learning community structure in the other type of network. 

Similar to Studies 3 and 4, we observed no correlation between learning during the social task 

and learning during the non-social tasks for Study 5 (r(28)=-0.074, p=.697); see Figure 6C. The 

combined correlation across the three within-subjects studies (Studies 3-5) was only 0.049 

(p=.512). 

To further examine the question of potentially distinct processes underlying the learning 

of community structure in social versus non-social networks, we asked whether social traits of a 

participant predicted their ability to learn the community structure in social networks but not 

their ability to learn the community structure in non-social networks. We found that there was a 

significant interaction between social orientation and condition (b=0.21, SE=0.08, t(28.00)=-

2.61, p=.014), such that individuals who reported greater collectivistic (versus individualistic) 

cultural values showed greater cross-cluster surprisal for the social networks (r(28)=.492, 

p=.006; see Figure 7A), but there was no association between social orientation and cross-cluster 

surprisal for the non-social networks (r(28)=-.164, p=.387). There was also a marginally 

significant interaction between perspective-taking and condition (b=0.13, SE=0.07, 

t(56.00)=1.90, p=.063; see Figure 7B), such that individuals who reported greater perspective-

taking showed greater cross-cluster surprisal for the social networks (r(28)=.412, p=.024), but 

there was no association between perspective-taking and cross-cluster surprisal for the non-social 

networks (r(28)=-.080, p=.674). These results suggest that people who are more in tune with 

others, who think about the self as connected to others, and who frequently consider the 

perspectives of others, are more likely to learn the community structure when the network is 

social versus non-social. These data provide additional evidence that the learning of community 
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structure in social networks is characterized by some processes that are independent from those 

implicated in the learning of community structure in non-social networks. 

Study 5 Discussion 

 Study 5 replicated the key findings from the first four studies using an in-lab experiment. 

We find that participants were capable of implicitly learning the complex, higher-order structure 

of social networks. We also found that their performance in social network learning was 

uncorrelated with their performance in non-social network learning. Furthermore, social traits, 

including social orientation and perspective-taking, uniquely predicted learning social 

community structure but not learning non-social community structure. Our results suggest that 

the process of learning community structure in social networks displays clear distinctions from 

the process of learning community structure in non-social networks. 

Mini Meta-Analysis 

In order to test whether the results described above were robust across studies, we also 

conducted a mini meta-analysis (Goh, Hall, & Rosenthal, 2016) on each effect of interest that 

was included in at least 3 of our studies. Using this approach, we were able to estimate the effect 

size for each of four effects: manipulation check 

 (Studies 2-5), cross-cluster surprisal effect (Studies 1-5), moderation of the cross-cluster 

surprisal effect by condition (social versus non-social; Studies 1-5), and the correlation between 

cross-cluster surprisal in the social and non-social tasks (Studies 3-5).  

First, we tested whether there was a significant main effect of condition in our 

manipulation check in Studies 2-5 (there was no manipulation check in Study 1). Our mini meta-

analysis estimated an effect size of d=0.60 (95% CI=[0.41,0.79]), confirming that participants 



SOCIAL VERSUS NON-SOCIAL NETWORK LEARNING  

 

37 

were reliably more likely to report thinking about the stimuli as people in the social condition 

than in the non-social condition (z=6.16, p<.001).  

Second, we tested whether participants reliably learned the community structure of the 

networks, as evidenced by a significant cross-cluster surprisal effect. We included the main 

effect of node type from the mixed effects models in Studies 1-5 (presented in Tables 1-5) in our 

mini meta-analysis. We estimated an effect size of d=2.11 (95% CI=[1.89,2.33]). Specifically, 

we found that participants were reliably slower when responding on post-transition trials than on 

pre-transition trials when examining all trials together (z=18.80, p<.001). Participants were also 

reliably slower when responding on post-transition trials than pre-transition trials when we 

estimated the effect size separately in the social task (z=16.64, p<.001, d=1.72, 95% 

CI=[1.52,192]) and non-social task (z=16.77, p<.001, d=1.75, 95% CI=[1.54,1.95]). These 

results suggest that participants are able to learn the community structure of both social and non-

social networks. 

Third, we also estimated the effect size for whether the cross-cluster surprisal effect was 

moderated by condition. We found that the cross-cluster surprisal is not reliably moderated by 

condition (node x condition interaction meta-analysis: z=0.58, p=.562, d=0.05, 95% CI=[-

0.12,0.22]), such that there is no difference in effect sizes across the social and non-social 

conditions. This result is intuitive given that the node x condition interaction was significant in 

only one study (Study 4), and the direction of the effect varied across studies (negative slope in 

Studies 1 and 4, positive slope in Studies 2, 3, and 5). These results suggest that the cross-cluster 

surprisal effect does not differ across conditions. 

Finally, across Studies 3-5 we also conducted a mini meta-analysis to test the correlation 

between conditions. We estimated an effect size of r=.058 (95% CI=[-.091,.203]), such that 
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across studies there was not a significant relationship between the cross-cluster surprisal effect in 

the social and non-social conditions (z=0.76, p=.447). These results suggest that the process of 

learning community structure in social networks is not correlated with the process of learning 

community structure in non-social networks. 

Discussion 

The majority of real-world systems are complex networks characterized by patterns of 

relationships between elements in the network (Cong & Liu, 2014; Dorogovtsev, Goltsev, & 

Mendes, 2008). Higher-order information about the patterns of relationships is often not captured 

by simply measuring pairwise associations (Barrat, Barthélemy, & Vespignani, 2008) and is an 

important mechanism by which people learn complex information (Chan & Vitevitch, 2010; 

Goldstein & Vitevitch, 2014; Halford, Wilson, & Phillips, 1998).  

While there has been a recent explosion in research on topological features of complex 

networks across the social sciences and biological sciences (Dorogovtsev et al., 2008; Girvan & 

Newman, 2002; Newman, 2010), research on how people learn relational data has mostly 

focused on pairwise relationships without considering the type of information. Thus, it is unclear 

how people learn information about higher-order clustering of social information, and whether 

the learning process shares any similar features with previously studied processes involved in 

learning relational data for non-social information (Karuza et al., 2017; Qian & Aslin, 2014; 

Qian, Jaeger, & Aslin, 2016; Schapiro et al., 2013).  

Here we show for the first time that people are capable of implicitly learning the 

complex, higher-order structure of social networks. Our results suggest that the learning of 

community structure in social networks may be at least partially distinct from the learning of 

community structure in non-social networks: we observed little correlation between individual 
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differences in the ability to learn community structure in social versus non-social networks. 

Finally, social traits, including social orientation and perspective-taking, uniquely predicted 

learning for social networks but not for non-social networks. These results advance our 

understanding of how people process complex relational information, and how that processing is 

influenced by the type of information being learned. 

Expanding Experimental Paradigms from Non-Social to Social Network Learning 

This study extends previous work that examined statistical relationships between non-

social stimuli (Fiser & Aslin, 2002, 2005; Karuza et al., 2017; Qian & Aslin, 2014; Qian et al., 

2016; Schapiro et al., 2013). In this literature, statistical relationships between stimuli are 

represented by temporal associations (stimuli frequently presented near each other in time; 

(Karuza et al., 2017; Qian & Aslin, 2014; Schapiro et al., 2013) or spatial associations (stimuli 

frequently presented at the same time; Qian et al., 2016). Individuals automatically bundle 

stimuli together into communities based on their temporal or spatial associations, such that 

stimuli that are strongly connected are processed more quickly, and people tend to respond more 

slowly when presented with stimuli that are not part of the current cluster (Karuza et al., 2017; 

Schapiro et al., 2013). Thus, individuals are capable of developing rich mental models of the 

higher-order topological information about the networks, even when they are not aware that such 

features exist (Qian et al., 2016). 

Here, we observed that participants were significantly slower at responding to trials 

immediately following a transition from one cluster to another cluster for both social and non-

social stimuli. Importantly, each node in the networks had an equivalent number of edges and 

thus the likelihood of moving from the pre-transition node to the post-transition node was 

equivalent to the likelihood of moving to any of the other within-cluster nodes that shared an 
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edge with the current image. This architecture ensured that slower responses could not be due to 

differences in transition probabilities and instead is likely due to differences in cluster 

membership for the pre-transition and post-transition nodes. Thus, participants who responded 

slower to post-transition nodes had implicitly learned that the post-transition and pre-transition 

nodes belonged to different clusters. 

Participants were also more likely to group together images that were closer together in 

the network, and these results did not differ for social and non-social networks, supporting the 

notion that participants successfully learned a higher order network structure. Again, the 

probability of any images being presented together in the odd-man out task was matched and all 

permutations were presented, and yet participants’ responses suggest that they were biased by the 

higher-order network structure. Together, these results provide evidence for a common RT 

signature of network structure learning for social and non-social stimuli. Network learning for 

non-social stimuli plays a crucial role in cognitive performance in many other domains, 

including categorization, word-learning, reasoning, planning, and memory (Cong & Liu, 2014; 

Engelthaler & Hills, 2017; Goldstein & Vitevitch, 2014; Halford et al., 2010). It is possible that 

social network learning might also play a crucial role in facilitating efficient performance on 

social cognitive tasks such as perspective-taking, social working memory, and social reasoning. 

Individual Differences in Social and Non-Social Network Learning 

However, the presence of a similar RT signature of learning in social and non-social 

networks does not necessarily mean that the underlying processes are identical. Previous work 

suggests that processing social information may rely on distinct processes from processing non-

social information (Gamond et al., 2012; Meyer et al., 2012; Van Overwalle, 2011; Zahn et al., 

2007). For example, brain regions recruited when reasoning about other people’s mental states 
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(mentalizing) are distinct from brain regions recruited during other reasoning tasks (Van 

Overwalle, 2011) and brain regions involved in mentalizing predict working memory 

performance for social but not non-social information (Meyer et al., 2012). The ways in which 

people learn categories are influenced by the type of category they are learning (Ashby & 

Maddox, 2005, 2011; Cunningham & Zelazo, 2007) and this extends to social categories 

(Gamond et al., 2012). However, none of this previous work has studied complex patterns of 

relational information. 

Our data suggest that the ability to learn community structure in social and non-social 

networks are uncorrelated, and individuals who are good at learning community structure on one 

type of network are not necessarily good at learning community structure on the other type of 

network. While noise could obscure the relationship between social and non-social network 

learning, the reliability of this effect across studies suggests that the signal-to-noise ratio is 

unlikely to be a central limitation. Although we hesitate to draw too strong conclusions from null 

effects, this observation is particularly striking given that we observed equivalent effects on 

average for both tasks, and the experimental task was virtually identical except for the way in 

which the stimuli were described. The only difference was whether the images were described as 

online avatars representing people or described as non-social images (abstract images in Studies 

1 and 3, and rock formations in Studies 2, 4, and 5). Results from a post-questionnaire confirmed 

the influence of the cover story where participants reported thinking about the images as people 

more frequently in the social condition. 

Thus, it is possible that social and non-social network learning may be supported by 

independent processes and motivations. The strongest evidence in favor of this idea is that social, 

but not non-social network learning, was correlated with individual differences in perspective 
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taking and social orientation. This observation highlights that different individuals, with different 

baseline motivations, performed the task differently.  The lack of an interaction between node 

type (pre- vs. post-transition) and condition (social vs. non-social) in all but one of our study 

variants, however, leaves open the possibility that the underlying mechanisms may overlap and 

be called upon according to these differing motivational forces. Additional research is needed to 

disentangle these different possible interpretations.  

We also found some evidence that the rate at which participants learn the social versus non-

social stimuli also differs. In Studies 1 and 2, participants demonstrated smaller cross-cluster 

surprisal effects at the beginning of the social network learning task (versus non-social network 

learning task) but this difference between social and non-social conditions diminished over time, 

such that the cross-cluster surprisal effects were equivalent at the end of the task (see Tables 1 

and 2 and Figures 2B and 3B).  

There are at least two plausible interpretations of this effect. First, this effect could be due to 

social network learning repurposing network learning of non-social information, much like other 

types of social cognition modify and repurpose other “ancestral” cognitive processes 

(Immordino-Yang, Chiao, & Fiske, 2010; Parkinson & Wheatley, 2015). This process might 

involve scaffolding of the social information on top of basic processing and would result in 

increased task demands and slower learning of the social network structure. Second, social 

information could actually be processed first and could instead bias the subsequent processing of 

detail. Both scenarios would lead to slower learning of the social network structure. However, it 

is important to note that the interaction between node type and time was only present in the 

between-subjects designs in Studies 1 and 2, and the interaction was not significant in the within-

subjects paradigms used in Studies 3, 4, and 5. It is possible that the order in which the 
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participants saw the two networks, or the fact that they saw both networks, obfuscated the 

interaction between node type and time, although further work is needed to directly test this 

possibility. 

Social Traits Uniquely Predict Social Network Learning 

 Another important test of the similarities (or differences) in learning social vs. non-social 

network structure concerns the trait-level predictors of social and non-social network learning. 

To the extent that learning social networks and learning non-social networks involve independent 

processes, we would expect them to be predicted by different traits. Consistent with this 

hypothesis, we find that perspective-taking and social orientation uniquely predict the learning of 

community structure in social networks but not non-social networks. Thus, individuals who are 

more likely to consider the mental states of others and think about the self as being closely 

connected to others are more likely to learn the higher-order structure of the social networks.  

People who are high in collectivistic social orientation are more likely to be concerned 

with social relationships and maintaining social harmony (Kim & Markus, 1999; Markus et al., 

1991; Tompson et al., 2015; Triandis & Gelfand, 1998), and may therefore be more likely to pick 

up on relational information in social networks. Moreover, people from collectivistic cultures are 

more likely to attend to contextual information (Chua et al., 2005; Nisbett et al., 2001) and 

perceive relationships in the environment (Ji, Peng, & Nisbett, 2000). Our work suggests that 

people high in collectivistic orientation are uniquely sensitive to social relationships, as they are 

not more likely to pick up on non-social network structure. 

This work also extends previous evidence suggesting that individual differences in ability 

to maintain social information in working memory is uniquely predicted by perspective-taking, 

whereas no such relationship exists for working memory for non-social information (Meyer & 
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Lieberman, 2016; Meyer et al., 2012, 2015). We build on this earlier work to show that learning 

of social networks is also uniquely predicted by perspective-taking, and expand it to show that 

other social traits including social orientation also predict social network learning. 

Real World Applications 

Understanding how people learn complex social networks has important implications for 

many real-world domains. In fact, the majority of real-world systems can be described by 

complex patterns of relationships between elements in the network (Cong & Liu, 2014; 

Dorogovtsev et al., 2008). Furthermore, network structure is a key driver of group behavior and 

has been studied in the context of environmental disasters (Bosworth & Kreps, 1986), terrorist 

networks (Krebs, 2002), gangs (Van Gennip et al., 2013), and many other social and biological 

systems (Girvan & Newman, 2002). In an increasingly mobile world, people are frequently 

interacting, living, and working with novel groups of people. To successfully integrate into these 

new communities, it will be crucial for individuals to learn information about that network. 

Methodological Considerations 

 One potential limitation of the current work is that data for Studies 1-4 were collected 

online through MTurk. This collection method allows for rapid collection of large samples of 

survey and behavioral data, but also introduces noise into the study. Although MTurk 

participants are at least as attentive as participants drawn from college samples (Hauser & 

Schwarz, 2016), there are risks associated with collecting data from a pool of participants who 

might complete dozens of surveys and experiments per month (Chandler, Mueller, & Paolacci, 

2014; Crump, McDonnell, Gureckis, Romero, & Morris, 2013).  

Moreover, our primary measure across all of the experiments was RT, which is likely 

influenced by variability in the computer, web browser, and internet quality used by each 
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participant. However, our primary dependent variable focused on within-participant variability in 

RT, and thus any concerns about between-subject variability in RT are mitigated. Moreover, in 

Study 5 we recruited participants from the community around Philadelphia and had them 

complete the experiment in a laboratory under controlled experimental conditions. The mean RT, 

accuracy, and cross-cluster surprisal effect were very similar in the MTurk samples and 

community sample. Converging evidence across Studies 1-4 (MTurk samples) and Study 5 

(community sample) helps to strengthen our confidence in these findings.  

 Another potential limitation is the small set of stimuli and single type of network 

structure. In order to demonstrate a clear effect with minimal variation across social and non-

social networks, we chose to focus our experiments on abstract images chosen from a small set 

and only examined two network configurations with very clear clusters. It is therefore unclear 

whether the effects described here might be influenced by the structure, such that it might be 

more difficult to learn more complex network topologies or network topologies with more 

transition edges between communities. Moreover, our results show that participants are capable 

of learning which communities an individual node belongs to, but future research should 

examine whether individuals are capable of learning other network features, such as which nodes 

are most influential (degree) or how densely connected the network is (density). 

Additionally, we did not test non-social traits. Given that social traits uniquely predicted 

social network learning, one potential hypothesis is that non-social network learning should be 

uniquely predicted by non-social traits (including working memory ability, intelligence, etc.). In 

addition, it is possible that familiarity with the type of information could influence how 

individuals learn network structure, such that individuals learn information they are familiar with 
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better. Future work could address this hypothesis by examining individual differences in 

familiarity with both social and non-social types of information. 

Moreover, if social information processing scaffolds on top of basic cognitive processing, 

then it is also possible that non-social cognitive abilities might influence both social and non-

social network learning, even though social traits only influence social network learning. Future 

work should include additional measures of non-social traits to test these competing hypotheses. 

Conclusion 

In this paper, we discussed statistical learning of social and non-social network structures. 

Statistical learning is an important process whereby people learn the relationship between 

features or pieces of information based on their frequency of occurring near each other in space 

or time (Fiser & Aslin, 2002, 2005). While this topic has been heavily studied in the non-social 

domain (Karuza et al., 2017; Qian & Aslin, 2014; Qian et al., 2016; Schapiro et al., 2013), no 

research to date has examined this process in the social domain. However, it is likely that 

statistical learning plays a crucial role in learning social networks, such as when individuals start 

a new job or encounter a new social group. Taken together, these results suggest that individuals 

are able to learn the higher-order network structure of both social and non-social information. 

Importantly, although there are similarities in the implicit learning signatures, there also appear 

to be distinct processes or motivations involved in learning social and non-social network 

structures. These results advance understanding of how people build mental models of both 

social and non-social features of the natural world. This research has important implications for 

how quickly people will learn and adapt to new social contexts that require integration into a new 

social network. Future research should examine whether individual differences in these abilities 

are linked to psychological adjustment and well-being following a move or social transition. 
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Table 1.  

Summary of Study 1 results after fitting a mixed effects model. 

  All Trials Non-Social Network Social Network 

Study 1 
   Main Effect of Node 

Type 
b=15.05, SE=1.51,  
t(68)=9.99, p<.001 

b=15.91, SE=2.23, 
t(34.04)=7.12, p<.001 

b=14.25, SE=2.10, 
t(40.57)=6.78, p<.001 

Main Effect of 
Condition 

b=11.95, SE=8.63,  
t(72)=1.38, p=.171 n/a n/a 

Main Effect of Trial 
Number 

b=-37.34, SE=2.82,           
t(72)=-13.23, p<.001 

b=-32.29, SE=4.52,         
t(34.15)=-7.14, p<.001 

b=-42.41, SE=3.47,   
t(37.14)=-12.21, p<.001 

Node x Condition 
Interaction 

b=-0.77, SE=1.51,           
t(68)=-0.51, p=.609 n/a n/a 

Node x Trial Interaction b=1.81, SE=1.39, 
t(10,271)=1.30, p=.194 

b=-2.94, SE=2.05,        
t(207.34)=-1.44, p=.152 

b=6.56, SE=2.01, 
t(211.13)=3.27, p=.001 

Condition x Trial 
Interaction 

b=-5.01, SE=2.82,            
t(72)=-1.77, p=.080 n/a n/a 

Node x Condition x 
Trial Interaction 

b=4.68, SE=1.39, 
t(10,271)=3.36, p<.001 n/a n/a 

Note. Significant effects are shown in bold. 
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Table 2.  

Summary of Study 2 results after fitting a mixed effects model. 

  All Trials Non-Social Network Social Network 

Study 2 
   Main Effect of Node 

Type 
b=11.91, SE=2.26, 
t(4,117)=5.28, p<.001 

b=11.83, SE=2.27,           
t(546)=5.20, p<.001 

b=14.32, SE=2.50, 
t(245)=5.74, p<.001 

Main Effect of 
Condition 

b=15.61, SE=18.85, 
t(77)=0.83, p=.410 n/a n/a 

Main Effect of Trial 
Number 

b=-39.36, SE=4.41,             
t(77)=-8.92, p<.001 

b=-39.42, SE=4.22,           
t(41)=-9.33, p<.001 

b=-25.29, SE=4.83,           
t(37)=-5.24, p<.001 

Node x Condition 
Interaction 

b=2.45, SE=3.29, 
t(4,200)=0.74, p=.457 n/a n/a 

Node x Trial Interaction b=-1.86, SE=2.25,           
t(7,414)=-0.83, p=.409 

b=-1.86, SE=2.24,           
t(3,950)=-0.83, p=.407 

b=5.54, SE=2.41, 
t(3,483)=2.30, p=.021 

Condition x Trial 
Interaction 

b=14.04, SE=6.38,           
t(78)=2.20, p=.031 n/a n/a 

Node x Condition x 
Trial Interaction 

b=7.36, SE=3.29, 
t(7,415)=2.24, p=.025 n/a n/a 

Note. Significant effects are shown in bold. 
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Table 3.  

Summary of Study 3 results after fitting a mixed effects model. 

  All Trials Non-Social Network Social Network 

Study 3 
   Main Effect of Node 

Type 
b=14.52, SE=1.29, 
t(67)=11.29, p<.001 

b=12.63, SE=1.77,       
t(64)=7.14, p<.001 

b=16.14, SE=1.74, 
t(61)=9.30, p<.001 

Main Effect of 
Condition 

b=.01, SE=1.25, 
t(12,170)=0.01, p=.992 n/a n/a 

Main Effect of Trial 
Number 

b=-24.44, SE=2.32,         
t(63)=-10.54, p<.001 

b=-27.53, SE=3.35,           
t(61)=-8.22, p<.001 

b=-23.29, SE=2.88,           
t(59)=-8.09, p<.001 

Node x Condition 
Interaction 

b=1.88, SE=1.24, 
t(12,130)=1.51, p=.131 n/a n/a 

Node x Trial Interaction b=1.37, SE=1.24, 
t(12,160)=1.10, p=.270 

b=1.38, SE=1.71,           
t(5,989)=0.81, p=.418 

b=1.43, SE=1.70, 
t(6,050)=0.84, p=.399 

Condition x Trial 
Interaction 

b=2.48, SE=1.25, 
t(12,170)=1.99, p=.047 n/a n/a 

Node x Condition x 
Trial Interaction 

b=-0.50, SE=1.24,              
t(12,160)=-0.41, p=.685 n/a n/a 

Note. Significant effects are shown in bold. 
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Table 4.  

Summary of Study 4 results after fitting a mixed effects model. 

  All Trials Non-Social Network Social Network 

Study 4 
   Main Effect of Node 

Type 
b=14.33, SE=1.16, 
t(87)=12.39, p<.001 

b=17.13, SE=1.51, 
t(432)=11.33, p<.001 

b=11.78, SE=1.50, 
t(85)=7.87, p<.001 

Main Effect of 
Condition 

b=-0.21, SE=1.04,    
t(17,757)=-0.20, p=.839 n/a n/a 

Main Effect of Trial 
Number 

b=-25.61, SE=2.09,        
t(88)=-12.23, p<.001 

b=-24.84, SE=2.71,              
t(89)=-9.16, p<.001 

b=-27.90, SE=2.76,        
t(85)=-10.11, p<.001 

Node x Condition 
Interaction 

b=-2.87, SE=1.04,   
t(17,741)=-2.77, p=.006 n/a n/a 

Node x Trial Interaction b=2.20, SE=1.04, 
t(17,775)=2.12, p=.034 

b=2.92, SE=1.44, 
t(8,831)=2.03, p=.042 

b=1.04, SE=1.43, 
t(8,770)=0.73, p=.469 

Condition x Trial 
Interaction 

b=-1.35, SE=1.04,     
t(17,797)=-1.30, p=.195 n/a n/a 

Node x Condition x 
Trial Interaction 

b=-1.11, SE=1.04,    
t(17,762)=-1.08, p=.282 n/a n/a 

Note. Significant effects are shown in bold. 
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Table 5.  

Summary of Study 5 results after fitting a mixed effects model. 

  All Trials Non-Social Network Social Network 

Study 5 
   Main Effect of Node 

Type 
b=8.53, SE=2.51,   
t(357)=3.40, p<.001 

b=8.75, SE=2.63,     
t(52.94)=3.32, p=.002 

b=12.14, SE=2.72, 
t(43.99)=4.47, p<.001 

Main Effect of 
Condition 

b=-5.93, SE=3.47,         
t(5,946)=-1.71, p=.087 n/a n/a 

Main Effect of Trial 
Number 

b=-28.01, SE=3.39,           
t(54)=-8.26, p<.001 

b=-28.39, SE=3.56,       
t(30.03)=-7.98, p<.001 

b=-22.78, SE=4.55,   
t(29.46)=-5.01, p<.001 

Node x Condition 
Interaction 

b=3.54, SE=3.45, 
t(5,924)=1.03, p=.305 n/a n/a 

Node x Trial Interaction b=0.04, SE=2.44, 
t(5,930)=0.02, p=.985 

b=-0.12, SE=2.86,         
t(23.82)=-0.04, p=.967 

b=0.13, SE=2.78, 
t(35.18)=0.05, p=.964 

Condition x Trial 
Interaction 

b=7.54, SE=3.48, 
t(5,937)=2.17, p=.030 n/a n/a 

Node x Condition x 
Trial Interaction 

b=0.14, SE=3.45, 
t(5,927)=0.04, p=.967 n/a n/a 

Note. Significant effects are shown in bold. 
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Figure 1. Random walk through network of fractal images. Study 1 consisted of a random walk through three 
clusters of five images (Figure 1A) whereas all other studies consisted of a random walk through two clusters of five 
images (Figure 1B). 
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Figure 2. Network learning in Study 1. 2A: Difference in RT for post-transition minus pre-transition trials for social 
and non-social networks. Participants responded significantly slower on post-transition trials than on pre-transition 
trials, and there were no significant differences between social and non-social tasks. 2B: Interaction between 
condition and time. Participants in the social condition showed weaker cross-cluster surprisal to start, but by the end 
of the task the effect of condition was negligible. 
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Figure 3. Network learning in the Study 2. 3A: Difference in RT for post-transition minus pre-transition trials for 
social and non-social networks. Participants responded significantly slower on post-transition trials than on pre-
transition trials, and there were no significant differences between social and non-social tasks. 3B: Interaction 
between condition and time. Participants in the social condition showed weaker cross-cluster surprisal to start, but 
by the end of the task the effect of condition was negligible. 
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Figure 4. Network learning in Study 3. 4A: Difference in RT for post-transition minus pre-transition trials for social 
and non-social networks. Participants responded significantly slower on post-transition trials than on pre-transition 
trials, and there were no significant differences between social and non-social tasks. 4B: Interaction between 
condition and time. There was no significant interaction between condition and time, such that participants showed 
similar cross-cluster surprisal effects at the beginning and end of both tasks. 4C: Correlation between each 
individual’s cross-cluster surprisal effect (standardized within subject) for the social network and non-social network 
conditions. There were no significant associations between social and non-social network learning. 
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Figure 5. Network learning in Study 4. 5A: Difference in RT for post-transition minus pre-transition trials for social 
and non-social networks. Participants responded significantly slower on post-transition trials than on pre-transition 
trials, and this effect was significantly larger for non-social networks. 5B: Interaction between condition and time. 
The difference in network learning for social and non-social networks did not significantly vary across the course of 
the tasks. 5C: Correlation between social and non-social network learning. Participants who were better at learning 
community structure in the non-social networks were not better at learning community structure in the social 
networks. 
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Figure 6. Network learning in Study 5. 6A: Difference in RT for post-transition minus pre-transition trials for social 
and non-social networks. Participants responded significantly slower on post-transition trials than on pre-transition 
trials, and there were no significant differences between social and non-social tasks. 6B: Interaction between 
condition and time. There was no significant difference in cross-cluster surprisal across the course of the task. 6C: 
Correlation between each individual’s cross-cluster surprisal effect (standardized within subject) for the social 
network and non-social network conditions. There were no significant associations between the learning of 
community structure in social and non-social networks. 
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Figure 7. Association between social traits and cross-cluster surprisal. People who are more collectivistic (Fig 7A) 
and people who are more likely to consider the perspective of others (Fig 7B) show stronger cross-cluster surprisal 
for the social networks, but not for the non-social networks. Higher values on the y-axis indicate more collectivistic 
(and less individualistic) scores (Fig 7A) and greater perspective-taking tendencies (Fig 7B). 


