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Network Approaches to Understand Individual Di(erences in Brain
Connectivity: Opportunities for Personality Neuroscience

Abstract
Over the past decade, advances in the interdisciplinary Aeld of network science have provided a framework for
understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this
work has focused on paCerns of functional connectivity derived from noninvasive neuroimaging techniques
such as functional magnetic resonance imaging (fMRI). An important subset of these e?orts has bridged the
computational approaches of network science with the rich empirical data and biological hypotheses of
neuroscience, and this research has begun to identify features of brain networks that explain individual
di?erences in social, emotional, and cognitive functioning. @e most common approach estimates
connections assuming a single conAguration of edges that is stable across the experimental session. In the
literature, this is referred to as a static network approach, and researchers measure static brain networks while
a subject is either at rest or performing a cognitively demanding task. Research on social and emotional
functioning has primarily focused on linking static brain networks with individual di?erences, but recent
advances have extended this work to examine temporal Buctuations in dynamic brain networks. Mounting
evidence suggests that both the strength and Bexibility of time-evolving brain networks inBuence individual
di?erences in executive function, aCention, working memory, and learning. In this review, we Arst examine the
current evidence for brain networks involved in cognitive functioning. @en we review some preliminary
evidence linking static network properties to individual di?erences in social and emotional functioning. We
then discuss the applicability of emerging dynamic network methods for examining individual di?erences in
social and emotional functioning. We close with an outline of important frontiers at the intersection between
network science and neuroscience that will enhance our understanding of the neurobiological underpinnings
of social behavior.
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Abstract: Over the past decade, advances in the interdisciplinary field of network science have provided 
a framework for understanding the intrinsic structure and function of human brain networks. A 
particularly fruitful area of this work has focused on patterns of functional connectivity derived from non-
invasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important 
subset of these efforts has bridged the computational approaches of network science with the rich 
empirical data and biological hypotheses of neuroscience, and this research has begun to identify features 
of brain networks that explain individual differences in social, emotional, and cognitive functioning. The 
most common approach estimates connections assuming a single configuration of edges that is stable 
across the experimental session. In the literature, this is referred to as a static network approach, and 
researchers measure static brain networks while a subject is either at rest or performing a cognitively 
demanding task. Research on social and emotional functioning has primarily focused on linking static 
brain networks with individual differences, but recent advances have extended this work to examine 
temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and 
flexibility of time-evolving brain networks influence individual differences in executive function, 
attention, working memory, and learning. In this review, we first examine the current evidence for brain 
networks involved in cognitive functioning. Then we review some preliminary evidence linking static 
network properties to individual differences in social and emotional functioning. We then discuss the 
applicability of emerging dynamic network methods for examining individual differences in social and 
emotional functioning. We close with an outline of important frontiers at the intersection between 
network science and neuroscience that will enhance our understanding of the neurobiological 
underpinnings of social behavior. 
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Network Approaches to Understand Individual Differences in Brain Connectivity: 

Opportunities for Personality Neuroscience 

 Individuals often respond differently when put in the same exact situation. For example, if two 

individuals were put into a crowded social situation with strangers, they might behave very differently. 

One person might experience that situation as stressful and negatively arousing, and might cope by 

behaving quietly and exiting the situation as soon as possible, while the other person might experience the 

situation as energizing and exciting, and might float around the room interacting with as many people as 

possible. Recent advances at the intersection of network science and neuroscience have provided insight 

into how information is transferred across the brain (Sporns, 2013), and how brain regions might work 

together to navigate social situations (Schmälzle et al., 2017). In this review, we describe network 

approaches to characterizing complex interactions between brain regions, which can advance 

understanding of individual differences in social, emotional, and cognitive functioning. 

Early work using neuroimaging techniques, including non-invasive functional magnetic 

resonance imaging (fMRI), attempted to map individual differences in social and emotional functioning to 

specific brain regions. These studies found robust associations between neural activation and individual 

differences in approach/avoidance tendencies (Gray et al., 2005), extraversion, neuroticism, and self-

consciousness (Eisenberger, Lieberman, & Satpute, 2005), rejection sensitivity (Eisenberger & 

Lieberman, 2004), self-construal (Ma et al., 2012; Ray et al., 2010), social working memory (Meyer, 

Spunt, Berkman, Taylor, & Lieberman, 2012), and responses to persuasive health messages (Falk, 

Berkman, Whalen, & Lieberman, 2011), to name a few. Further, in some studies brain activation can 

predict individual variation in human behavior above and beyond self-report measures (Cooper, 

Tompson, O’Donnell, & Falk, 2015; Falk et al., 2015). This work represents an important first step in 

identifying neural correlates of individual differences in social, emotional and cognitive functioning. 

 Brain regions, however, do not operate in isolation: temporal synchronization of neuronal firing 

across brain regions is a key way in which brain regions communicate and process information, and 

higher coordination between groups of neurons directly influences neuronal excitation (Fries, 2005, 
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2015). Thus, focusing on activation within single brain regions ignores potentially useful information 

about how these brain regions work together (Friston, 2011). To understand why these brain regions 

predict individual differences in social, emotional, and cognitive functioning, as well as improve our 

predictive models in applied domains, we must also understand the brain networks involved (Barrett & 

Satpute, 2013; Medaglia, Lynall, & Bassett, 2015; Sporns, 2014).  

Brain networks exist at multiple time scales, including coordinated activity among regions that is 

consistent over time and tasks (static networks; Figure 1A) as well as time-evolving synchronization 

between regions that fluctuate and reconfigure in response to changing task demands (dynamic networks; 

see Figure 1C; Hutchison et al., 2013). The emerging field of network neuroscience (Bassett & Sporns, 

2017) provides conceptual frameworks and computational tools to quantitatively measure and 

characterize the roles of brain regions in functional networks, to characterize the patterns of 

interconnections between regions of interest and the rest of the brain, and to link both these roles and 

patterns to social, emotional, and cognitive functioning. 

Overview 

In this review, we focus on three categories of individual differences: cognitive functioning, 

emotional functioning, and social functioning. Although much of the early work examining links between 

functional connectivity and individual differences in psychological processes focused on pairwise 

associations between two specific brain regions, we argue that network approaches to characterizing 

complex patterns of connectivity between brain regions can provide a more complete and richer 

understanding of how the brain facilitates effective cognitive, emotional, and social functioning. 

Characterizing patterns of brain activity as networks is important for understanding how brains 

lead to psychological processes and behaviors for three key reasons. First, successful task performance 

often requires subnetworks of the brain to work together, whereas at other times, more competitive 

dynamics promote more effective performance (Fornito, Harrison, Zalesky, & Simons, 2012; Khambhati, 

Sizemore, Betzel, & Bassett, 2017). As a result, the relationship between connectivity strength and task 

performance is contingent on the task being performed, the co-occurrence with task-irrelevant 
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connections elsewhere in the brain, and the specificity of the recruited subnetworks. Second, an 

individual’s ability to flexibility reconfigure brain networks is an important mechanism that drives 

cognitive functioning (Bassett et al., 2011, 2013; Cole, Bassett, Power, Braver, & Petersen, 2014; 

Davison et al., 2015; Mattar, Cole, Thompson-Schill, & Bassett, 2015; Shine, Bissett, et al., 2016; Shine, 

Koyejo, & Poldrack, 2016). Third, network methods can often explain additional variance in behavioral 

outcomes beyond what is explained by activation in a single brain region. In fact, in some cases dynamic 

network methods can explain twice as much variance in cognitive functioning as static networks or 

pairwise connections (Jia, Hu, & Deshpande, 2014). Thus, both static and dynamic network methods have 

the potential to provide important insights into cognitive, emotional, and social functioning. 

In this review, we first summarize common approaches for analyzing brain networks and existing 

evidence for intrinsic functional brain networks, which serve as a framework for understanding the links 

between brain networks and cognitive, emotional, and social functioning. Next, we describe existing 

evidence for both static and dynamic brain networks involved in cognitive functioning. Although research 

on social and emotional functioning has primarily focused on associations with static brain networks, 

applying dynamic network methods to examining individual differences in social and emotional 

functioning is an important next step for understanding the neurobiological underpinnings of social 

behavior. We discuss existing evidence for static brain networks involved in social and emotional 

functioning, as well as potential applications of dynamic network methods. Although there is an extensive 

literature linking individual differences in brain responses to clinical states and outcomes, these 

relationships are beyond the scope of this paper, and we refer readers interested in these topics to Vaidya 

& Gordon (2013) and Cao, Wang, & He (2015). 

Approaches for Analyzing Brain Connectivity 

Approaches for analyzing static and dynamic brain networks build on earlier work that primarily 

focused on pairwise connections between brain regions. In this section, we first describe these pairwise 

approaches, as they form a basis for more advanced network approaches and provide insight into 

advantages as well as limitations of connectivity methods. We then summarize three common techniques 
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for analyzing brain networks that could help personality researchers better understand how 

neurobiological processes contribute to individual differences in cognitive, emotional, and social 

functioning. Finally, we discuss practical considerations for how to implement network methods. 

Pairwise Connectivity 

Early work examining functional connectivity and its links to psychological processes focused on 

pairwise connectivity between two brain regions. Pairwise approaches compute the average Blood 

Oxygen Level Dependent (BOLD) time course from all voxels within a single region of interest (ROI) or 

seed and then test the strength of the connectivity between the seed time course and the time course of the 

BOLD signal in other brain regions (Margulies et al., 2007). Connectivity strength is typically measured 

using a Pearson’s correlation coefficient (Biswal, Yetkin, Haughton, & Hyde, 1995) or wavelet coherence 

(Grinsted, Moore, & Jevrejeva, 2004; Müller et al., 2004). Psychophysiological interaction (PPI) 

approaches use general linear models to further identify connectivity between two regions that is stronger 

in one task condition than another (Friston et al., 1997; McLaren, Ries, Xu, & Johnson, 2012), allowing 

researchers to focus on patterns of connectivity that are directly linked to what a person is doing during a 

task.  

Pairwise approaches are useful for characterizing simplified patterns of connectivity, especially 

when there is an a priori hypothesis about how one brain region either regulates processing in another 

brain region or communicates information to it. For example, individual differences in emotion regulation 

are associated with different coupling between amygdala and prefrontal cortex, such that individuals who 

show greater decreases in amygdala activation as prefrontal cortex activation increases are better at down-

regulating negative emotions (H. Lee, Heller, van Reekum, Nelson, & Davidson, 2012).  

However, by necessity pairwise connectivity measures ignore the thousands of other connections 

that are providing and receiving input from the two regions of interest. Even relatively basic visual 

processes require input from complex, evolving, and expansive networks of brain regions (Parks & 

Madden, 2013). Pairwise approaches therefore offer an overly simplistic view of how brain regions work 

together to promote efficient information processing and cognitive, social, or emotional functioning 
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(Mišić & Sporns, 2016). Therefore, network approaches for studying brain connectivity can advance 

understanding of how groups of brain regions work together to process information and ultimately 

facilitate effective cognitive, social, and emotional functioning (Barrett & Satpute, 2013). 

Systems in Intrinsic Functional Brain Networks 

Most studies of functional brain networks start with brain activity that is measured either during a 

specific task or during what is called the “resting-state” (Raichle, 2015). Task-based fMRI is primarily 

used to identify functional brain networks that are recruited to perform a specific task. By contrast, 

resting-state fMRI is primarily used to measure intrinsic brain networks that are present in the absence of 

an experimentally driven task (Fox et al., 2005; Raichle, 2015; Raichle & Snyder, 2007). Intrinsic brain 

networks are preserved during sleep and are also present across a wide variety of task states (Cole et al., 

2014). Thus, intrinsic brain networks provide an important framework for understanding the stable, 

fundamental organization of brain connectivity.  

Resting-state functional connectivity reveals intrinsic, modular (Meunier, Achard, Morcom, & 

Bullmore, 2009) but flexible (Mattar, Betzel, & Bassett, 2016) subnetworks that appear to map onto 

cognitive systems. Some such systems (including default mode, sensory, and motor systems) are highly 

integrated internally and have relatively few connections to other systems, whereas other systems 

(including executive function systems) share numerous connections with other systems (Power et al., 

2011). Moreover, brain systems identified using resting-state functional connectivity are relatively stable 

and present across a wide variety of task states (Cole et al., 2014). This suggests that intrinsic 

subnetworks identified using resting-state fMRI may capture a stable set of brain states that are modified 

as necessary to implement task demands (Cole et al., 2014; Mattar et al., 2015). Often community 

changes are reflected in reduced within-system functional connectivity (Cole et al., 2014), and greater 

between-system communication as subnetworks work together to complete a task (Cole et al., 2013). 

Segregation of large-scale brain networks into subnetworks confers numerous advantages to the brain, 

including the ability to perform complex, highly specialized tasks while maintaining the ability to flexibly 

adapt to changing task demands (Wig, 2017).  
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On top of this relatively stable architecture across people, individual variability in connectivity is 

an important driver of individual differences in social, emotional, and cognitive functioning (Vaidya & 

Gordon, 2013; Passaro et al., 2017; Brooks et al., 2017). Specifically, brain regions that show greater 

variability in connectivity across individuals are more likely to be associated with individual differences 

in personality traits, anxiety, risk-seeking tendencies, working memory, and perception (Mueller et al., 

2013). 

Approaches for analyzing brain networks 

Most brain network analyses start with a set of a priori seeds (defined as nodes in the brain 

graph), and compute the pairwise connectivity (defined as edges in the brain graph) between each seed 

and every other seed. Using the measures of connectivity described above to quantify the strength of the 

connection between each brain region and every other brain region in the set, researchers can build an 

adjacency matrix where each cell in the matrix represents a pairwise connection (Figure 1B). Network 

science tools can then be applied to these adjacency matrices to describe and characterize the patterns of 

connectivity across the graph in order to identify topological features of more complex brain networks 

(Bullmore & Sporns, 2009; Bullmore & Bassett, 2011; Newman, 2010; Rubinov & Sporns, 2010). For the 

purposes of this review, we will highlight three useful tools that personality neuroscientists can use to 

examine brain networks. 

The first approach examines functional segregation of subnetworks within large-scale brain 

networks. Segregation of large-scale brain networks into subnetworks facilitates performance by enabling 

the brain to perform multiple tasks simultaneously and adapt to changing task demands (Wig, 2017). 

Independent components analysis (ICA) takes the time course in each voxel in the brain and partitions the 

brain into a set of components where the voxels in each component share similar BOLD time courses 

(Allen, Erhardt, Wei, Eichele, & Calhoun, 2012; Beckmann, DeLuca, Devlin, & Smith, 2005; Calhoun, 

Liu, & Adali, 2009). Community detection algorithms (Porter, Onnela, & Mucha, 2009) take the 

connectivity between nodes in a graph (either voxels, brain regions, or seeds) and partition the brain to 

maximize within-community connectivity strength (Figure 1B; Sporns & Betzel, 2016; for review, see 



INDIVIDUAL	DIFFERENCES	AND	BRAIN	NETWORKS	 8	

Garcia, Ashourvan, Muldoon, Vettel, & Bassett, 2017). The power of this first approach arises from the 

analysis of the resulting network’s topological features, such as the number of subnetworks, their regional 

configurations, and the proportion of their functional segregation versus integration (relative strength of 

within-subnetwork connections versus between-subnetwork connections). Researchers interested in 

understanding personality have used resting-state fMRI to test for individual differences in the 

configuration of intrinsic brain networks and found that greater relative within-subnetwork connectivity 

(versus between-subnetwork connectivity) is associated with increased neuroticism (Davis et al., 2013). 

This approach has also been used to study how reconfiguration of these networks during specific tasks 

might influence personality traits, and found that people who exhibit greater within-subnetwork 

connectivity while evaluating threat stimuli also score higher on trait neuroticism (Cremers et al., 2010). 

The second approach examines network properties associated with information transfer and 

efficient information processing. For example, network science measures of path length and efficiency 

indicate how quickly or easily a piece of information can traverse from one location in the network to 

another location (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Mišić, Sporns, & McIntosh, 2014). 

These can be computed globally for a large-scale network or computed locally for each subnetwork. 

Other measures of network topology include degree, density, rich club, diverse club, and core/periphery 

structure, and we direct interested readers to Rubinov & Sporns (2010). In short, network measures 

provide insight into how information may be strategically channeled through nodes with characteristic 

connectivity properties for specialized signal propagation in a network (Gu et al., 2015; Kim et al., 2017). 

For example, nodes in a “diverse club” have edges that are distributed across a large-scale network and 

are thought to make communication between subnetworks more efficient (Bertolero, Yeo, & D’Esposito, 

2017). Taken together, these tools can provide rich insights into how various features of the network 

topology support effective cognitive, emotional, and social functioning. 

The third approach examines temporal dynamics of brain networks, including how subnetworks 

reconfigure in response to changing task demands. Static network approaches described above can also be 

extended to study dynamic temporal fluctuations in functional networks. For example, multi-layer 
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community detection also partitions the brain into discrete communities, but is applied to data where the 

time course is separated into time windows (Garcia et al., 2017); this approach can be used to test how 

graph topology and network configuration might change over time (Figure 1D; Betzel & Bassett, 2016). 

Non-negative matrix factorization is another useful algorithm that can be used to partition the brain into 

subgraphs that vary over time (Lee & Seung, 1999). This latter approach has the added benefit of defining 

subgraphs based on the extent to which the strength of connectivity between brain regions varies 

systematically over time, rather than just considering the average connectivity strength (Chai et al., 2017; 

Khambhati, Mattar, & Bassett, 2017). 

Dynamic network methods can also be useful for extending static measures of network efficiency 

(e.g., path length, centrality, etc.) to the temporal domain. For example, path length is a useful measure to 

examine the ease of information transfer throughout a static brain network (assuming that information is 

more easily transferred across shorter topological distances), while temporal path length or latency in a 

dynamic network can indicate the speed with which information can be transferred throughout dynamic 

brain networks, if the same assumptions hold (Sizemore & Bassett, 2017). Additionally, time-by-time 

graphs measure the similarity of the brain topology at each time point with every other time point and can 

provide useful information about how the brain traverses across cognitive states during a task 

(Khambhati, Sizemore, et al., 2017). These measures have been linked to learning (Reddy et al., 2017) 

and development (Medaglia et al., 2018) and could also be applied to individual differences where 

network efficiency is a hypothesized mediator (e.g., intelligence, impulsivity, etc.; see below for 

examples). 



INDIVIDUAL	DIFFERENCES	AND	BRAIN	NETWORKS	 10	

 

Figure 1. Approaches for analyzing brain networks. Brains can be represented as graphs consisting of nodes (regions) and 
connections between those nodes (connectivity; 1A), and connection strengths can be mathematically represented in adjacency 
matrices where each cell represents the strength of the connection between a pair of regions (1B). Community detection 
algorithms take adjacency matrices and partition the brain into modules that contain greater within-community edges than 
expected in a statistical null model (1C). Graphical approaches to studying brains can be extended across time (1D). Dynamic 
networks capture how frequently brain regions (represented in rows) change their allegiance from one community to another 
(indexed by color), identifying what regions are inflexible (largely same community affiliation across time steps) versus flexible 
(changing communities frequently across time steps; 1E). 

Practical Considerations 

Although we argue that network neuroscience methods provide a fruitful set of tools for 

personality neuroscience, there are challenges and limitations that researchers interested in employing 

these techniques should consider. First, there is an ongoing debate about the mechanisms underlying 

measures of functional connectivity (Laumann et al., 2016; Lehmann, White, Henson, Cam-CAN, & 

Geerligs, 2017; Mateo, Knutsen, Tsai, Shih, & Kleinfeld, 2017; Winder, Echagarruga, Zhang, & Drew, 

2017). At a minimum, measures of functional connectivity are extremely sensitive to artifacts, such that a 

significant proportion of the variance in edge strength is often accounted for by confounds including head 

motion and other physiological noise (Ciric et al., 2017; Laumann et al., 2016; Satterthwaite et al., 2017). 
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Furthermore, some researchers have argued that the majority of temporal variations in 

connectivity are due to physiological noise (Laumann et al., 2016) or spurious variations due to the choice 

of parameters (Lehmann et al., 2017). Importantly, much of this discussion centers around resting-state 

fMRI, and there is some evidence that the relationship between neuronal activity and BOLD-based 

measures of functional connectivity is stronger when completing functional tasks (Winder et al., 2017). 

The ability of these measures to predict theoretically relevant out of scanner tasks also adds confidence in 

their value (Chai et al., 2017). 

Although the above debate has yet to resolve the issue of what percentage of functional 

connectivity measures is due to artifacts, researchers have developed tools for correcting for many of 

these confounds. Cleaning the data by regressing out head motion and physiological signals (i.e., global 

signal, white matter signal, and cerebrospinal fluid signal) and removing high-motion time points from 

the data can dramatically improve the quality of the connectivity data (Ciric et al., 2017). Thus, cleaning 

the BOLD signal is an important first step prior to computing pairwise connectivity metrics, which make 

up the network adjacency matrix. 

 In order to construct a brain network from cleaned neuroimaging data, researchers must define 

the nodes to include in their analyses. Most commonly, these network nodes are defined as contiguous 

clusters of voxels based on anatomical or functional features. For example, nodes can be defined based on 

peak voxels from a meta-analysis of a functional response of interest (e.g., using the Neurosynth database; 

Schmälzle et al., 2017), based on cortical architecture (Yeo et al., 2011), or a combination of these 

approaches (Glasser et al., 2016). One current limitation is that many popular atlases only include cortical 

regions or have limited precision in subcortical regions, making it difficult to study functions executed by 

subcortical structures (e.g., reward processing in subcortical regions such as ventral striatum). 

Once the network adjacency matrix has been constructed, there are now a number of publicly 

available toolboxes which can readily compute network metrics, including the Brain Connectivity 

Toolbox, (Rubinov & Sporns, 2010). Researchers, however, might be interested in not just what the 

characteristic path length in a network is (for example), but also whether that path length is significantly 
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longer or shorter than that expected in an appropriate random network null model. Permutation testing by 

randomly rewiring the network (randomly permuting the association of weights to edges, or randomly re-

assigning anatomical or subnetwork labels) is a common approach that can provide insight into whether 

network measures vary significantly from a null model as well as whether they vary between groups 

(Bassett et al., 2013; Betzel, Medaglia, et al., 2016; Zalesky, Fornito, & Bullmore, 2010).  

Finally, for the purposes of this review, we will focus on fMRI-based approaches to studying 

brain networks as they are by far the most common. But, these methods have also been applied to other 

neuroimaging modalities, including electroencephalography (EEG), intracranial electrocorticography 

(ECoG), magnetoencephalography (MEG), positron emission topography (PET), functional near infrared 

spectroscopy (fNIRS), and arterial spin labeled (ASL) perfusion MRI.  We also limit our discussion to 

three primary psychological domains (cognitive, emotional and social functioning) to illustrate the work 

that has been done to use network methods for advancing our understanding of psychology, as well as 

opportunities to further advance knowledge moving forward. 

Cognitive functioning 

Psychologists and neuroscientists have studied how variations in functional brain networks might 

explain individual variations in how people think and behave. Studies of functional brain networks have 

yielded useful insights into individual differences in cognitive functioning. Cognitive functioning 

frequently involves a combination of basic perceptual tasks and more complex cognitive tasks, and the 

ability to switch between different brain states leads to better overall performance (Khambhati, Medaglia, 

Karuza, Thompson-Schill, & Bassett, 2017; Sadaghiani, Poline, Kleinschmidt, & D’Esposito, 2015). To 

achieve better cognitive performance, the brain may involve multiple sets of functionally specialized 

regions that form domain-specific, core subnetworks (e.g., language, visual, auditory, etc.) and more 

domain-general regions that flexibly switch between specialized core subnetworks depending on the task 

(Fedorenko & Thompson-Schill, 2014). Greater functional separation (modularity) between brain 

subnetworks supports basic perceptual and cognitive tasks whereas stronger connections between 
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subnetworks (increased integration) facilitates performance on more cognitively complex tasks 

(Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011; Shine, Bissett, et al., 2016). 

Static Brain Networks and Cognitive Functioning 

Much research on individual differences in cognitive functioning has focused on foundational 

cognitive processes, such as executive function, working memory, and perception. Across these 

processes, connectivity within the frontoparietal system and between the frontoparietal system and other 

systems appears to play an important role. Frontoparietal connectivity is positively correlated with 

working memory performance (Repovs, Csernansky, & Barch, 2011) and task-switching performance 

(Yin, Wang, Pan, Liu, & Chen, 2015; Zhang et al., 2009). In addition, working memory performance was 

influenced by network properties of the default mode system, such that greater network efficiency and 

within-system connectivity was associated with better working memory across individuals (Hampson, 

Driesen, Skudlarski, Gore, & Constable, 2006). Furthermore, in the case of working memory 

performance, stronger negative connectivity between default and frontoparietal systems was associated 

with better working memory performance (Hampson, Driesen, Roth, Gore, & Constable, 2010). 

Recent studies have also examined how brain networks contribute to other cognitive traits, 

including intelligence and creativity. Research on brain networks and intelligence has leveraged graph 

theoretical approaches to quantify how efficient the brain is at transferring information across brain 

regions. Greater density of connectivity between the prefrontal cortex and the rest of the brain (Figure 2A; 

Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012), shorter path lengths (Li et al., 2009), reduced 

interhemispheric connectivity (Santarnecchi, Tatti, Rossi, Serino, & Rossi, 2015), and stronger 

connections involving moderately weak, long-distance paths (Santarnecchi, Galli, Polizzotto, Rossi, & 

Rossi, 2014) predict increased IQ scores. Brain networks that are characterized by dense within-system 

connections with a few strong between-system connections optimize efficient information processing 

(Bullmore & Bassett, 2011; Muldoon, Bridgeford, & Bassett, 2016). Thus, individuals with brain 

networks that more efficiently process information have higher IQs than individuals with brain networks 
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that less efficiently process information, providing insight into the neural architecture underlying 

intelligence. 

Taken together, these results suggest a complicated relationship between default mode and 

frontoparietal systems that promotes improved cognitive function (Zanto & Gazzaley, 2013). In general, 

increased connectivity and efficiency within the frontoparietal system and greater connectivity between 

the frontoparietal system, subcortical, and sensory networks predicts better cognitive performance (Cohen 

& D’Esposito, 2016; Vaidya & Gordon, 2013). But, these results also suggest that the default mode 

system is not simply deactivated during cognitive tasks, and actually might interact with the frontoparietal 

system in important ways. One theory argues that the default mode, although demonstrating lower 

activation during tasks than during rest, is still facilitating or monitoring performance (Hampson et al., 

2006) and might be important for integrating internally-directed thought with processing of external 

stimuli. In fact, resting-state connectivity between the default mode and inferior frontal gyrus is 

associated with greater creativity (Beaty et al., 2014), suggesting that low-level spontaneous processes 

(mind-wandering, mental simulation, etc.) facilitate creativity, but also require some external attention 

resources to tap and harness those spontaneous processes. These results provide important insights into 

the complex nature of even basic cognitive functions. 

Dynamic Brain Networks and Cognitive Functioning 

Although overall activation and configuration of brain networks is important, the degree to which 

brain networks can flexibly adjust to changing task demands is also important for cognitive performance, 

and can predict individual differences in cognitive functioning. As evidenced above, successful task 

performance sometimes requires subnetworks of the brain to work together, whereas at other times more 

competitive dynamics promote more effective performance. The above work focuses on differences 

between tasks, but many cognitive tasks require multiple cognitive processes, and thus the optimal 

configuration of brain networks and cooperation/competition between those networks can also vary 

within a task. 
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Dynamic network approaches may be particularly useful in addressing the more complicated 

push-pull relationships that promote efficient and effective cognitive performance (Calhoun, Miller, 

Pearlson, & Adalı, 2014; Khambhati, Sizemore, et al., 2017; Kopell, Gritton, Whittington, & Kramer, 

2014). Flexibility within frontal cortex and integration across different frontal subnetworks is associated 

with greater working memory performance (Braun et al., 2015). Moreover, reconfiguration within and 

between frontal subnetworks was also associated with more general cognitive flexibility (Braun et al., 

2015). Furthermore, executive function areas increase in strength and flexibility from adolescence to 

young adulthood, and this increase predicts both group and individual differences in neurocognitive 

performance (Chai et al., 2016). And in general, the ability of the brain to flexibly reconfigure has been 

linked to learning in a variety of domains (Bassett et al., 2011; Bassett, Yang, Wymbs, & Grafton, 2015; 

Mattar, Thompson-Schill, & Bassett, 2017). This work suggests a more general role of network flexibility 

in facilitating task switching and cognitive control during cognitively demanding tasks. 

Dynamic network methods can also provide insight into how interactions between subnetworks of 

the brain influence cognitive performance. Cooperation (positive connectivity) between executive 

function and cerebellar brain networks is positively associated with initiating new, low-demand cognitive 

tasks but negatively associated with performing complex, high-demand cognitive tasks (Figure 2B; 

Khambhati, Medaglia, et al., 2017). On a basic perception task, reduced within-system connectivity and 

increased between-system connectivity in visual cortex and the default mode was associated with poorer 

performance (Sadaghiani et al., 2015). These findings suggest that some brain subnetworks are important 

for specific task demands whereas other brain subnetworks are more generalized and support performance 

across varying task demands. 



INDIVIDUAL	DIFFERENCES	AND	BRAIN	NETWORKS	 16	

 

Figure 2. Brain subnetworks and cognitive functioning. Using meta-analyses and probabilistic cytoarchitecture, regions affiliated 
with three subnetworks were identified (cognitive control in red, sensory-motor in yellow, and default mode in blue; 2A). 
Measures of brain network efficiency predict fluid intelligence and cognitive control, yielding insights into how the brain 
processes complex cognitive tasks (2B). Figure adapted with permission from Cole et al., 2012. Dynamic network methods can 
yield important insights into how variation in the cooperative and competitive dynamics during a cognitive task influences 
performance. Using non-negative matrix factorization to identify groups of connections in the brain that vary together across 
time, these results show that a subgraph with positive connectivity between executive function and cerebellar systems (left 
image) is associated with better cognitive performance (2C), whereas a subgraph with negative connectivity between executive 
function and somatosensory systems was associated with poorer cognitive performance (2D). Figure adapted with permission 
from Khambhati et al., 2017. 

Social and Emotional Functioning 

As in the cognitive domain, psychologists and neuroscientists have also studied how variations in 

functional brain networks might explain individual variations in how people think and behave in social 

and emotional domains. Paralleling the literature on cognitive functioning, social and emotional functions 

likewise involve a combination of basic perceptual tasks and more complex and integrative tasks, but less 

work has investigated how the ability to switch between different brain states may or may not lead to 

better overall performance. For example, early work on neural correlates of social cognition identified 

brain regions in the default mode system (medial prefrontal cortex [mPFC], posterior cingulate cortex 

[PCC], and temporoparietal junction [TPJ]) as being important for processing social information and 
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predicting individual differences in social and emotional functioning (Adolfi et al., 2017; Lieberman, 

2007; Van Overwalle, 2009), and cognitive control regions in frontotemporal cortex as important for 

regulating affective responses in the salience system (Buhle et al., 2014). Despite these interesting 

findings, most of the research on neural correlates of social and emotional functioning has historically 

focused on univariate or pairwise analyses, and would benefit from incorporating graph theoretical and 

dynamic network approaches. Just as network approaches to characterizing complex patterns of 

connectivity between brain regions have provided a more complete and richer understanding of how brain 

regions work together in the context of cognitive function, we suggest that similar gains may be realized 

in applying these tools to understanding individual differences in emotional, and social functioning. As 

described in more detail below, these approaches can advance knowledge about how people navigate their 

social world. 

Static Brain Networks and Emotional Functioning 

The majority of research using fMRI to study individual differences in emotional functioning has 

applied seed-based approaches to identify region-to-region connections that are associated with a 

particular personality trait. These seed-based studies show that amygdala, striatum, and other limbic 

regions involved in emotion processing are associated with individual differences in emotional 

functioning. For example, neuroticism is associated with reduced functional connectivity between 

amygdala and anterior cingulate cortex (ACC) during negative emotional stimuli (Cremers et al., 2010; 

Gentili et al., 2017), as well as during a classical conditioning reward task (Schweckendiek, Stark, & 

Klucken, 2016). Although these studies give some interesting insight into the role of different brain 

regions and pairwise connections during tasks, they do not provide a complete mechanistic explanation; 

this gap by extension thus provides an avenue for graph theoretical and dynamic network approaches to 

augment our understanding. 

Recently, researchers have begun using network approaches to study personality traits associated 

with emotional functioning. In this work, personality traits associated with individual differences in 

affective processing (e.g., anxiety, neuroticism, harm avoidance) appear to show differences in brain 
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subnetworks that involve connections between salience hubs (insula and amygdala) and other cortical 

regions (Cremers et al., 2010; Davis et al., 2013; Gentili et al., 2017; Markett, Montag, Melchers, Weber, 

& Reuter, 2016; Schweckendiek et al., 2016). More efficient connections within affective subnetworks 

and greater integration between affective and cognitive subnetworks may help individuals control 

spontaneous affective responses to aversive or appetitive stimuli, with these connections changing over 

the course of development (Silvers et al., 2017). 

Graph theoretical approaches have been used to identify network properties that are associated 

with emotional functioning. Greater network efficiency in the insular-opercular subnetwork during rest is 

associated with greater affective control (Markett, Montag, Melchers, Weber, & Reuter, 2016). Shorter 

characteristic path length and reduced functional connectivity in the insular-opercular subnetwork during 

rest predicts decreased harm avoidance (Markett et al., 2016), and greater functional segregation of 

affective and cognitive brain regions during rest is associated with increased impulsivity (Davis et al., 

2013). Davis and colleagues (2013) examined the modular structure of brain networks in high, medium, 

and low impulsivity individuals. They found that highly impulsive individuals showed greater density of 

within-system connections and a decreased strength of between-system connections during rest. 

Furthermore, regions associated with cognitive control were less connected to subcortical reward regions 

in highly impulsive individuals, suggesting that increased modularity of these brain networks might be 

implicated in a reduced ability to inhibit reward-related impulses. 

In addition to focusing heavily on seed based approaches, with a small but growing body of 

research employing graph theoretical approaches, research on brain networks and emotional functioning 

has focused almost exclusively on static brain networks. Moving forward, the inclusion of dynamic 

network methods can test novel hypotheses about how the brain influences individual differences in social 

behavior. The research reviewed in the section on dynamic networks and cognitive functioning shows that 

simply focusing on average connectivity across a scan can miss important information about how brain 

subnetworks are reconfiguring and interacting with one another both at rest (Hutchison et al., 2013) and in 

response to changing task demands (Telesford et al., 2016). Moreover, within-individual variation in 
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dynamic brain networks tracks daily variations in mood (Betzel, Satterthwaite, Gold, & Bassett, 2016), 

suggesting that dynamic fluctuations in brain network connectivity might be linked to socioemotional 

outcomes.  

Moreover, greater functional integration between affective and cognitive brain networks is linked 

to lower neuroticism (Davis et al., 2013). It is interesting to speculate about exactly how this link occurs. 

We note that network science defines connector nodes to be those that share connections with multiple 

subnetworks at once and that thereby facilitate communication between subnetworks (Maxwell A 

Bertolero, Yeo, & D’Esposito, 2015). We hypothesize that one route through which affective and 

cognitive networks might become integrated is by connector nodes that share connections with both 

cognitive and affective subnetworks; due to their location between the two subnetworks, connector hubs 

could therefore flexibly shift their allegiance between these subnetworks to help regulate negative 

emotional experiences. 

Static Brain Networks and Social Functioning 

Compared to cognitive and emotional functioning, fewer studies have examined brain networks 

and social functioning. The few studies that have been conducted tend to highlight within-system 

connectivity in the default mode and between the default mode and regions involved in processing 

sensory input (e.g., visual areas). The default mode system reflects internally directed and self-generated 

thought, sensory systems reflect externally directed stimulus-evoked processing, and cortical hubs (both 

in default mode and frontoparietal systems) integrate information across internal and external modalities 

(Andrews-Hanna, Smallwood, & Spreng, 2014). Successfully navigating social interactions may require 

hubs in the default mode system that can efficiently integrate external information about the social 

environment with internal information about the self. 

In one recent study, Schmaelzle and colleagues (2017) examined functional connectivity during 

social exclusion and found differences in functional connectivity in default mode and mentalizing 

subnetworks during exclusion compared to inclusion (Figure 3A). Interestingly, they also found that this 

relationship was moderated by social network density, such that individuals with less dense friendship 
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networks showed a stronger association between mentalizing network connectivity and rejection 

sensitivity (Schmälzle et al., 2017). It is possible that people with less dense social networks (versus 

people with more dense social networks) rely on different strategies and mentalizing resources when 

interacting with others, which may shape how they respond to social exclusion. For example, the 

experience of frequently interacting with unconnected others might influence how people perceive and 

interpret others’ behavior, and whether they consider others’ perspectives during social interactions.  

This work is also consistent with an emerging literature that has investigated the association 

between static brain networks and personality traits. Personality traits linked to social processing, such as 

extraversion, are often associated with the default mode system (Adelstein et al., 2011; Vaidya & Gordon, 

2013). Taken together, this work suggests that individual differences in social functioning might be 

facilitated by regions in the default mode, which can integrate external information (perhaps about the 

social environment) with internal information.  

The above work, however, has only examined the association between static networks and social 

functioning. Dynamic network methods may provide additional insight into the mechanistic role that the 

default mode system is playing in facilitating social functioning. To the extent that default mode regions 

are operating as hubs that integrate external information about the social environment with internally 

directed thought, we might expect these regions to flexibly shift allegiance to different subnetworks 

depending on task demands (Mattar et al., 2015). Thus, a complementary hypothesis is that, in addition to 

the magnitude of connectivity, the flexibility with which cortical hubs in the default mode and 

frontoparietal subnetworks dynamically change the strength of their connections to different brain regions 

or other subnetworks might also be important for understanding individual differences in social and 

emotional functioning. For example, bicultural individuals who perceive their cultural identities as more 

overlapping and blended recruit dorsal mPFC more when thinking about close others (Huff, Yoon, Lee, 

Mandadi, & Gutchess, 2013). We hypothesize that flexibility and integration between cognitive control 

regions (executive function) and internally directed default mode regions might be important for 

successful integration of cultural identities (Figure 3B). 
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Figure 3. Brain networks and social functioning. Recent work shows that network connectivity within parts of the default mode 
subnetwork (blue nodes) is greater following social exclusion (3A), and that this effect is moderated by the density of an 
individual’s friendship network (3B; adapted with permission from Schmaelzle et al. (2017)). We suggest that dynamic network 
methods can advance understanding of social functioning, including how people navigate multiple social identities. People who 
are better able to integrate multiple social identities may be able to do so, in part, because their brain flexibility adjusts to 
changing task demands and integrates information between subnetworks. In this case, people high in identity integration would 
have many brain regions that change communities frequently across time steps (3C). 

Conclusion 

In this review, we discuss recent advances in social and personality neuroscience, with a focus on 

the application of network science methods to understanding individual differences in social, emotional, 

and cognitive functioning. These efforts bridge the computational approaches of network science with the 

rich empirical data and biological hypotheses of neuroscience. Much of this work has focused on 

individual differences in cognitive functioning (creativity, intelligence, executive function), and we 

describe this research with the hope that it will demonstrate the potential utility of network approaches to 

understanding individual differences in social and emotional functioning. In particular, dynamic network 

methods form a novel tool set that can help unpack how brain networks are shifting over time, and how 

those fluctuations might influence behavioral outcomes. These methods provide novel insights into the 
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nature of individual differences in cognitive functioning and will serve as useful tools for social and 

personality research.  
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