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Abstract 

The social environment an individual is embedded in influences their ability and 

motivation to engage self-control processes, but little is known about the neural mechanisms 

underlying this effect.  Many individuals successfully regulate their behavior even when they do 

not show strong activation in canonical self-control brain regions. Thus, individuals may rely on 

other resources to compensate, including daily experiences navigating and managing complex 

social relationships that likely bolster self-control processes. Here, we employed a network 

neuroscience approach to investigate the role of social context and social brain systems in 

facilitating self-control in adolescents. We measured brain activation using fMRI as 62 

adolescents completed a Go/No-Go response inhibition task. We found that self-referential brain 

systems compensate for weaker activation in executive function brain systems, especially for 

adolescents with more friends and more communities in their social networks. Collectively, our 

results indicate a critical role for self-referential brain systems during the developmental 

trajectory of self-control throughout adolescence.  

 

Keywords: response inhibition; social networks; cognitive control; network science; community 

structure 
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Introduction 

Social interaction confers cognitive benefits across the lifespan (Beadleston et al., 2019; 

Hawkley and Cacioppo, 2010; Hikichi et al., 2017; Ybarra et al., 2011). Research has shown 

robust benefits of social connections across different age populations (Beadleston et al., 2019; 

Hikichi et al., 2017; Ybarra and Winkielman, 2012) and species (Baarendse et al., 2013; 

Simpson et al., 2016). In particular, social connection is associated with increased performance 

on cognitive tasks including executive function (Ybarra et al., 2011), verbal reasoning 

(Beadleston et al., 2019), and self-control (Farley and Kim-Spoon, 2014; Meldrum et al., 2012). 

Although research has shown benefits of social connection for cognitive performance, an open 

question is whether social resources can compensate when cognitive skills are underdeveloped or 

underutilized. 

In this study, we examine whether processing in social brain regions that help us make 

sense of ourselves and others can compensate when an individual has weaker recruitment of 

cognitive brain systems to successfully regulate their behavior. Increasing evidence from 

network neuroscience suggests that the coordinated action of multiple brain regions as well as 

interactions between systems support fast and efficient information processing (Shine et al., 

2016; Vatansever et al., 2015). Given evidence that social interactions can boost cognitive 

performance (Beadleston et al., 2019; Ybarra et al., 2011, 2008), we suggest that social brain 

systems might facilitate better cognitive performance, especially for individuals with weaker 

recruitment of executive brain systems.  Adolescents exhibit heightened social sensitivity 

(Braams and Crone, 2017) and appraising, representing, and processing information about the 

self-concept is a fundamentally social process for adolescents (Hart, 1988; Pfeifer et al., 2009; 
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Sebastian et al., 2008). Thus, our analyses here focus on both self-referential and mentalizing 

brain systems within the broader social brain. 

We also build on a small but growing body of evidence that suggests social context may 

be relevant to how people use their brains to perform cognitive tasks (Falk and Bassett, 2017). 

Having larger networks, having more communities, or having communities that are more 

separated from each other might require cognitive capacities within the social brain related to 

tracking and sharing information with different groups (Bickart et al., 2012; O’Donnell et al., 

2017) and tracking one’s own status relative to the group (Zerubavel et al., 2015). For instance, 

there is variability in how actively people recruit individuals into their network, maintain existing 

communities within their network, and keep social sub-groups segregated for distinct functions 

(e.g., separate groups provide support for romantic relationships, school, or work; Rainie and 

Wellman, 2012).  Thus, the degree to which an individual’s social network is organized into 

many (versus few) or segregated (versus overlapping) communities could be associated with the 

cognitive or social resources that individuals are likely to recruit to regulate their behavior. 

Here, we used fMRI to measure brain activation while adolescents completed a Go/No-

Go response inhibition task. We focus here on adolescents, given their sensitivity to social 

influence (Braams & Crone, 2017; Wasylyshyn et al., 2018). We also collected information 

about adolescents’ real-life social networks in order to assess the moderating role of social 

network properties. We hypothesize that distributed patterns of activation across response 

inhibition brain regions and social brain systems (self-referential and mentalizing systems) 

should be associated with response inhibition performance. Additionally, we expect that the 

effects of social brain systems on response inhibition will be greater for individuals who have 
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larger social networks organized into many (versus few) or segregated (versus overlapping) 

communities. 

Method 

Participants 

One hundred and three adolescent males (all 16-year-olds) were recruited through the 

Michigan state driver registry database as part of a larger study on peer influences on adolescent 

driving (Falk et al., 2014). Participants met standard MRI safety criteria.  In accordance with 

Institutional Review Board approval from the University of Michigan, legal guardians provided 

written informed consent, and adolescents provided written assent. 29 participants did not 

complete the social network measure and 10 participants were missing behavioral data for the 

Go/No-Go task. One participant had poor behavioral performance (less than 50% accuracy), and 

one participant had excessive head motion (greater than 3mm framewise displacement). 

Analyses were conducted on the 62 remaining participants. 

Response Inhibition Task (Go/No-Go) 

Adolescents completed a Go/No-Go task (Aron, Fletcher, Bullmore, Sahakian, & 

Robbins, 2003; Logan, 1994) while their BOLD activation was measured in an MRI scanner. 

80% of trials were considered Go trials and 20% of trials were considered No-Go trials. On each 

trial, a letter was presented on the screen for 500 ms, followed by a 1000 ms fixation interval. 

Participants were instructed to press a button if the letter was an A through F, and withhold their 

response if the letter was an X. A key component of successful response inhibition is the ability 

to balance responding quickly with accurately inhibiting unwanted responses on No-Go trials 

(Cascio et al., 2015; Tomlinson et al., 2020; Townsend and Ashby, 1978). To account for the 

tradeoff between speed and accuracy, performance was measured using Go/No-Go efficiency: 
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where !"#$ represents the average response time in seconds on Go trials, and %&&'$#$ represents 

the percentage of No-Go trials where the participants correctly withheld a response. We then 

subtracted this score from unity so that higher scores indicate better performance. 

Real-life Social Network Properties 

Outside of the scanner, participants provided access to their Facebook network data using 

an online survey and the Facebook OpenGraph API (collected in 2011-2013). We anonymized 

the data and used the NetworkX package (Hagberg, Schult, & Swart, 2008) implemented in 

Python 2.7 to construct binary, undirected graphs of each participant’s social network where 

each Facebook friend is represented as a node in the graph and each connection between friends 

is represented as an edge on the graph. Using NetworkX, we then computed the size, number, 

and modularity of communities for each adolescent’s social network. The size of each network 

was defined as the total number of friends. To determine the number of communities in each 

network, we used a Louvain-like locally greedy algorithm (Blondel et al., 2008) to segregate 

friends into non-overlapping groups by maximizing the number of within-group connections 

relative to an appropriate random network null model (defined here as the configuration model; 

Newman & Girvan, 2004). Mathematically, the algorithm maximizes the following modularity 

quality function:  

 

where Aij represents the strength of the connection between nodes i and j (being equal to 1 if 

nodes i and j share a connection, and to 0 if they do not share a connection), ki and kj represent 
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the sum of the connection strengths for nodes connected to nodes i and j, respectively (equivalent 

to the number of first and second-degree connections for each node), 2m is the sum of all the 

connection strengths in the network (equivalent to the total number of connections in the 

network), δ is the Kronecker delta, and ci and cj represent the communities to which nodes i and j 

are assigned, respectively. 

This process yields a partition of nodes into communities and a maximum Q value, the 

latter of which is often referred to as the network modularity (Newman, 2006). Network 

modularity ranges from 0 to 1, where a densely connected network (i.e., all of an adolescent’s 

friends are also friends with each other) has a score closer to 0 whereas a segregated network 

(i.e., an adolescent has separate clusters of friends) has a score closer to 1.  

fMRI Data Acquisition and Preprocessing 

Functional images were recorded using a reverse spiral sequence (repetition time = 2,000 

ms, echo time = 30 ms, flip angle = 90°, 43 axial slices, field of view = 220 mm, slice thickness 

= 3 mm, voxel size = 3.44 × 3.44 × 3.0 mm). We also acquired in-plane T1-weighted images (43 

slices, slice thickness = 3 mm, voxel size = 0.86 × 0.86 × 3.0 mm) and high-resolution T1-

weighted images [spoiled gradient recall (SPGR) acquisition, 124 slices, slice thickness = 1.02 × 

1.02 × 1.2 mm] for use in co-registration and normalization. Functional data were preprocessed 

using Statistical Parametric Mapping (SPM8, Friston, Ashburner, Kiebel, Nichols, & Penny, 

2007). The first four volumes were discarded before analysis. Functional images were despiked 

using AFNI’s 3dDespike program (Cox, 1996), corrected for differences in slice timing, and 

spatially realigned to the first functional image. We then applied a high-pass filter (128 sec 

cutoff), and the subsequent volumes were weighted according to the inverse of their noise 

variance using the robust weighted least squares toolbox (Diedrichsen, Hashambhoy, Rane, & 
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Shadmehr, 2005). In-plane T1 images were registered to the mean functional image, then high-

resolution T1 images were registered to the in-plane image. Structural images were then skull-

stripped and normalized to the skull-stripped MNI template provided by FSL (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012). 

For functional connectivity analyses, we used the nilearn package (Abraham et al., 2014) 

in Python 2.7 to extract average timeseries from 5mm spheres defined from a whole-brain atlas 

(Power et al., 2011). Timeseries in each region were bandpass filtered between 0.06 and 0.12 Hz, 

detrended, and standardized. We also regressed out the average timeseries in each individual’s 

white matter and cerebrospinal fluid, as well as six head motion parameters. We then censored 

frames with framewise displacement > 0.5 mm. 

Putative cognitive systems 

Using a whole-brain parcellation comprised of 264 regions of interest (Power et al., 

2011), we identified regions that were involved in response inhibition by conducting a reverse 

inference meta-analysis using the term “response inhibition” in the Neurosynth database 

(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). We then conducted two additional 

reverse inference meta-analyses using the terms “self-referential” and “mentalizing”. For each 

meta-analysis, we identified studies that matched the key phrase (threshold = 0.001, results of 

database query as of October 2017; response inhibition: 176 studies; self-referential: 127 studies; 

mentalizing: 124 studies) and submitted the associated MNI coordinates from each set of studies 

to a Neurosynth meta-analysis. 

 Regions of interest were considered to be involved in the process of interest if at least 

half of the voxels in the region were significantly activated in the FDR-corrected (p<0.01) 

reverse inference map for that term. We excluded regions that were identified in multiple 
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processes to differentiate between systems involved in our three key processes, including 12 

regions involved in both self-referential and mentalizing. All analyses reported in this study 

include 21 mentalizing regions, 8 self-referential regions, and 13 response inhibition regions 

(Figure 1A). 

Statistical analysis of imaging data 

We focused on three markers of brain dynamics in our analyses: activation in each 

system, connectivity within each system, and connectivity between systems. Activation was 

measured by the average BOLD activation of each system during correct No-Go versus correct 

Go trials. Connectivity within systems was measured by the average Pearson correlation between 

time series of any two nodes in the system. Connectivity between systems was measured by the 

average Pearson correlation coefficient between time series of any node in one system and any 

node in another system. All statistical analyses were conducted in R v3.4 (R Core Team, 2015). 

System activation. Our first set of analyses examined mean activation for correct No-Go versus 

correct Go trials. Using a general linear model implemented in SPM8, the voxel activation was 

predicted from weighted beta coefficients for BOLD activation during correct No-Go trials, 

false-alarm No-Go trials, and missed Go trials. We extracted the contrast weight coefficients for 

the correct No-Go trials versus correct Go trials from each of the 42 regions of interest, and 

averaged the response across regions in each system (response inhibition, self-referential, and 

mentalizing) to calculate mean system activation. 

We conducted three subsets of analyses using average activation of each system to test 

our planned hypotheses. First, we assessed whether average activation in the response-inhibition 

system, self-referential system, and mentalizing system was stronger for correct No-Go versus 

correct Go trials using one-sample t-tests. Second, we computed the correlation between average 
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system activation and the Go/No-Go efficiency score. Finally, we employed multiple regression 

to examine the interaction between brain systems. Given multicollinearity between the self-

referential and mentalizing systems, we built two models using the Go/No-Go efficiency score as 

the dependent variable: (i) one model used response inhibition system and self-referential system 

activation as independent variables, whereas (ii) the other used response inhibition system and 

mentalizing system activation as independent variables. 

Functional Connectivity. We next examined connectivity within and between brain systems. 

We constructed a 42 × 42 functional connectivity matrix for each subject and each run where the 

ijth element of the matrix represented the Pearson correlation coefficient between activation 

timeseries in region i and region j. We then averaged the functional connectivity matrices for the 

two runs for each participant to yield a single functional connectivity matrix for each participant. 

We then averaged the connectivity across all regions within each of the three cognitive systems 

to compute each system’s within-system connectivity. Finally, we computed two between-

system connectivity values between the response inhibition system and the mentalizing and self-

referential systems. 

We then used both within- and between-system connectivity in two subsets of 

hypothesis-driven analyses. First, we computed the correlation between the Go/No-Go efficiency 

score and connectivity. Second, we ran five separate multiple regression models using the 

Go/No-Go efficiency score as the dependent variable: the first three had response inhibition 

system activation and one of the within-system connectivity variables as the independent 

variables, whereas the other two had response inhibition system activation and one of the 

between-system connectivity variables as the independent variables. 
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Social Network Moderation Analyses. Finally, we investigated the relationship between social 

network structure and neural and behavioral responses during a response inhibition task. 

Separate models were employed to avoid overfitting and multicollinearity between independent 

variables. We assessed whether any of the three social network properties (number, size, and 

modularity of communities) moderated the relationship between brain activation or connectivity 

and task performance. Separate regression models were run with adolescents’ Go/No-Go 

efficiency score as the dependent variable and each combination of brain measurement (mean 

activation of each system, connectivity within each system, and the two between-system 

connectivity values) and social network property (number, size, and modularity of communities) 

as the independent variables. 

Data Availability 

The data and code to reproduce all analyses and figures in this paper are available in 

Github repository [https://github.com/cnlab/Tompson_TPS_GNG_FB_SocialNet]. 

Results 

Behavioral Performance on a Task Requiring Response Inhibition 

 We first examined behavioral performance. Participants responded quickly (M = 373 ms, 

SD=4.36 ms) and accurately (M = 373 ms, SD=4.36 ms) on Go trials, and average accuracy on 

No-Go trials was 75.4% (SD=11.0%). We observed a speed-accuracy tradeoff such that 

participants with greater accuracy on No-Go trials were slower on Go trials (r(60)=0.373, 

p=0.003). For all subsequent analyses, we focused on the Go/No-Go efficiency score (M=0.497, 

SD=0.081), where larger values indicate that participants are responding quickly but still 

correctly inhibiting responses on No-Go trials, and lower values indicate that a participant was 

either responding fast but inaccurately, or slow but accurately. 
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Activation of Brain Systems During a Task Requiring Response Inhibition 

 Second, we examined recruitment of the response-inhibition, self-referential, and 

mentalizing systems during trials that required response inhibition. Average activation was 

significantly greater for correct No-Go trials than correct Go trials in both the response inhibition 

system (t(60)=3.58, p<0.001) and the mentalizing system (t(60)=5.51, p<0.001), but not for the 

self-referential system (t(60)=1.25, p=0.216; Figure 1B). 

 We next examined whether mean activation for No-Go trials versus Go trials in each of 

the three systems accounted for variability in the adolescents’ Go/No-Go efficiency score. 

Response inhibition system activation was not correlated with individual differences in 

efficiency (r(60)=0.166, p=0.197; Figure 1C), but self-referential system activation was 

positively associated with efficiency (r(60)=0.323, p=0.010; Figure 1D). The mentalizing system 

showed a similar trend as the self-referential system, but its activation was marginally associated 

with efficiency (r(60)=0.246, p=0.054; Figure 1E). 

Compensatory Activation in Social Brain Systems 

Third, we examined our hypothesis that adolescents with less tendency to use response 

inhibition brain systems may instead recruit regions outside the response inhibition system to 

perform the task. We ran two multiple regression analyses between the response inhibition 

network and each of the two social brain systems, with mean system activation for No-Go versus 

Go trials as the independent variable and the Go/No-Go efficiency score as the dependent 

variable. 

We found a significant interaction between response inhibition system activation and 

self-referential system activation: adolescents who had weaker response inhibition system 

activation showed a stronger relationship between task performance and self-referential system 
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activation (β=-0.214, p=0.035; Figure 2A). Simple slopes analyses further revealed that self-

referential system activation was significantly associated with efficiency at lower levels (-1 SD) 

of response inhibition system activation (β=0.487, p=0.001), but not at higher levels (+1 SD) of 

response inhibition system activation (β=0.059, p=0.722). 

We found a similar, albeit marginal, effect with response inhibition system activation and 

mentalizing system activation: adolescents who had weaker response inhibition system activation 

showed a stronger relationship between task performance and mentalizing system activation (β=-

0.176, p=0.065; Figure 2B). Simple slopes analyses further revealed that the mentalizing system 

activation was significantly associated with efficiency at lower levels (-1 SD) of response 

inhibition system activation (β=0.412, p=0.022), but not at higher levels (+1 SD) of response 

inhibition system activation (β=0.060, p=0.717). 

Connectivity Within and Between Brain Systems and Response Inhibition 

 In addition to examining mean system activation, we were also interested in 

determining whether connectivity within and between these three systems was associated with 

successfully and efficiently inhibiting prepotent responses. The above analyses suggest that 

recruitment of social brain systems might serve a compensatory role for adolescents with less 

mature brain development. If self-referential and mentalizing systems are compensating for 

weaker recruitment of response inhibition systems, then it is possible that communication 

between these regions is important for efficient response inhibition.  

Therefore, we examined the average connectivity both within each of the three systems as 

well as the average connectivity between the response inhibition network and each of the social 

brain systems (self-referential and mentalizing). We found that adolescents who had a higher 

Go/No-Go efficiency score had stronger connectivity between the response inhibition and self-
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referential systems (r(60)=0.315, p=0.010; Figure 3A) and weaker connectivity within the self-

referential system (r(60)=-0.355, p=0.005; Figure 3B). There were no significant associations 

between mentalizing system connectivity and task performance. 

Unique Contribution of Mean Activation and Average Connectivity for Response 

Inhibition 

Since both the mean system activation and connectivity results showed a compensatory 

role for the social brain systems, we included both measurements of brain activation in the same 

model to understand their relationship to improved performance on the response inhibition task.  

We found a significant interaction between response inhibition system activation and the 

connectivity between the response inhibition system and the self-referential system (β=-0.232, 

p=0.039; Figure 3C). Simple slopes analyses further revealed a significant association between 

response inhibition × self-referential system connectivity and efficiency at lower levels (-1 SD) 

of response inhibition system activation (β=0.559, p=0.001), but not at higher levels of response 

inhibition system activation (β=0.096, p=0.553). Interestingly, we observed no moderating effect 

for connectivity within the self-referential system (β=0.123, p=0.358; Figure 3D). Thus, 

activation in the self-referential system supports efficient task performance when it involves 

communication with response inhibition brain regions, but not when it involves communication 

within the self-referential system.  

Real-life Social Networks Account for Compensatory Role of Social Brain Systems 

Across our analyses, results demonstrated that brain systems implicated in social 

processes facilitate better response inhibition performance. Consequently, we examined whether 

social network properties (number, size, and modularity of communities) moderated the 

observed relationship between brain activation or connectivity and adolescents’ Go/No-Go 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article/doi/10.1093/scan/nsaa109/5881271 by guest on 08 Septem

ber 2020



 

 15 

efficiency score. In our study, adolescents had an average of 491 Facebook friends in their social 

network (SD=280), which were clustered into an average of 8.42 communities (SD=4.07) with a 

mean modularity of 0.235 (SD=0.122). We tested the moderating role of each of these three 

social network parameters in separate models for mean activation, within-system connectivity, 

and between-system connectivity for the response inhibition, mentalizing, and self-referential 

systems. 

We found that the relationship between response inhibition system activation and an 

adolescent’s Go/No-Go efficiency score was moderated by social network properties. 

Specifically, there was a significant interaction between response inhibition system activation 

and network modularity (β=0.344, p=0.026). Additionally, there were two marginally significant 

interactions: one occurred between activation in the response inhibition system and the number 

of communities (β=0.299, p=0.085; Figure 4A), whereas the other occurred between activation 

in the response inhibition system and the network size (β=0.211, p=0.084). We further probed 

these interactions using simple slopes analysis. We found that adolescents high (+1 SD) in 

network size, number of communities, and modularity had a significant positive relationship 

between response inhibition system activation and the Go/No-Go efficiency score (β=0.390, 

p=0.027; β=0.530, p=0.034; β=0.625, p=0.009; respectively), whereas the relationship was not 

significant for adolescents low (-1 SD) in network size, number of communities, and modularity 

(β=-0.033, p=0.853; β=-0.068, p=0.713; β=-0.062, p=0.703; respectively). Interestingly, no 

significant interactions were found between these three social network properties and social brain 

system activation.  

In contrast, the connectivity results revealed that an adolescent’s real-life social network 

accounted for the compensatory role that social brain systems served for better task performance. 
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The association between brain connectivity and task performance was significantly moderated by 

the number of social network communities, but not by social network size or modularity. The 

number of communities significantly moderated the relationship between the Go/No-Go 

efficiency score and the between-system connectivity of the response inhibition and self-

referential systems (β=0.367, p=0.005; Figure 4B). Compared to adolescents with fewer 

communities in their social networks (-1 SD; β=-0.068, p=0.713), adolescents with more 

communities (+1 SD) showed a stronger positive association between their Go/No-Go efficiency 

score and the between-system connectivity of the response inhibition and self-referential systems 

(β=0.530, p=0.034). 

We also observed a marginally significant moderating effect of number of communities 

on the relationship between the Go/No-Go efficiency score and within-system mentalizing 

connectivity (β=-0.250, p=0.058). Adolescents with a large number of communities exhibited a 

negative relationship between task performance and within-system mentalizing connectivity, 

whereas adolescents with few communities showed a positive relationship between their Go/No-

Go efficiency score and within-system mentalizing connectivity; however, the simple slopes 

were not significant in either case (β=-0.277, p=0.134; β=0.224, p=0.224; respectively). 

Discussion 

Self-control processes predict many important outcomes in adolescence, including school 

success (Blair & Diamond, 2008), risky behaviors (Behan et al., 2014), and psychiatric outcomes 

(Liddle et al., 2011). Social context also predicts how adolescents engage self-control processes, 

such that family and peer relationships can facilitate better self-control or buffer against potential 

negative effects of weaker self-control (Farley & Kim-Spoon, 2014; Meldrum et al., 2012). Yet, 

the neurophysiological drivers of successful response inhibition in adolescents remain unclear. 
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We argue that progress in understanding has been hampered in part by a focus on activation in 

single brain regions as well as a lack of focus on the social context surrounding the adolescent.  

Employing a network neuroscience approach (Bassett & Sporns, 2017), we found that 

brain regions outside the canonical response inhibition system compensated for weaker 

activation in the response inhibition system; adolescents who had weaker response inhibition 

activation still performed well on the Go/No-Go task if they had stronger activation in self-

referential brain regions and greater connectivity between self-referential brain regions and the 

response inhibition system. Moreover, adolescents with larger social networks broken into more 

communities showed stronger relationships between brain systems and response inhibition. 

Collectively, our results provide insight into how brain systems facilitate response inhibition in 

adolescents, and how these brain responses are moderated by an adolescents’ real-life social 

network. 

Activation in Social Brain Systems 

This study extends previous work that finds more distributed patterns of brain activation 

in adolescents during response inhibition (Fair et al., 2007; Rubia et al., 2013). We found that 

activation in both the response inhibition system and mentalizing system was significantly 

greater during No-Go than Go trials. Although the relationship between response inhibition 

system activation and response inhibition efficiency was not significant, this relationship was 

moderated by network dynamics in social brain systems including self-referential and 

mentalizing systems. Adolescents with weaker response inhibition activation still perform well 

on the Go/No-Go task if they have stronger activation in self-referential and mentalizing 

systems, and if they have greater connectivity between the self-referential and response 

inhibition system during the task.  
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The version of the Go/No-Go task used in the current study has no explicit social 

components, and so one might wonder how or why social brain systems are recruited during a 

non-social task. Since most brain regions serve multiple functions, one possibility is that the 

cortical regions implicated in social processing are being co-opted for response inhibition to 

compensate for weaker activation in other brain regions. It is also possible that, because 

adolescents are highly sensitive to social information, they are recruiting additional motivational 

or cognitive strategies from their daily social experiences to facilitate effective task performance 

(e.g., to perform well in front of the experimenter, feel proud of their performance, or implicitly 

compete against others in the study). Another possibility is that self-control processes may first 

develop specifically for social situations in social brain systems, and then self-control becomes 

more domain-general once the canonical response inhibition system observed in adults develops 

over the course of adolescence. 

Connectivity between Response Inhibition and Self-referential Brain Systems 

If self-referential and mentalizing brain systems within the default mode network 

compensate for weaker recruitment of the response inhibition system, then communication 

between default mode and response inhibition regions may facilitate efficient response 

inhibition. We found that connectivity between the response inhibition and self-referential 

systems was positively associated with Go/No-Go efficiency, whereas connectivity within the 

self-referential system was negatively associated with Go/No-Go efficiency. Thus, the self-

referential brain system may compensate for weaker recruitment of the response inhibition 

system, but only when the self-referential system is communicating directly with canonical 

response inhibition brain regions. It is important to note that there were no significant effects of 

mentalizing system connectivity, and thus our connectivity findings provide evidence for self-

 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article/doi/10.1093/scan/nsaa109/5881271 by guest on 08 Septem

ber 2020



 

 19 

referential in promoting response inhibition, but do not provide evidence for social brain systems 

more broadly.  

The role of brain systems linked to self-referential in contributing to effective response 

inhibition can also be seen as bridging the divide between “self-appraisal” and “self-control”. 

Recent work on self-referential in adolescents suggest that key regions in the self-referential 

brain system, including ventromedial prefrontal cortex (vmPFC), integrate self and identity-

related values with other inputs to drive motivated behavior (Pfeifer and Berkman, 2018). Thus, 

self-referential in adolescents may be contributing to response inhibition by integrating task-

relevant information with identity-related information and directing engagement of canonical 

response inhibition regions. As noted above, it is also possible that cortical regions implicated in 

self-related processing are being co-opted for response inhibition to compensate for weaker 

activation in other brain regions, which would explain why connectivity between self-referential 

and response inhibition systems is linked to better performance, but connectivity within the self-

referential system is linked to worse performance.Recent work in network neuroscience also 

suggests that successful performance on many cognitive tasks requires coordinated action across 

multiple brain regions and brain systems (Chai et al., 2017; Shine et al., 2016). This role for 

distributed connectivity extends to regions not typically considered important for a specific 

cognitive process. For example, regions in the default mode network facilitate faster response 

times in a motor task (Vatansever et al., 2015) and better working memory performance (Čeko et 

al., 2015), but are not canonically thought of as part of motor or memory circuitry. Similarly, 

brain systems implicated in social processes may facilitate better response inhibition 

performance. 

 Social Network Structure and Response Inhibition 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article/doi/10.1093/scan/nsaa109/5881271 by guest on 08 Septem

ber 2020



 

 20 

The current work also contributes to a growing body of evidence linking social network 

structure and neural processes (O’Donnell et al., 2017; Powell, Lewis, Roberts, Garcia-Finana, & 

Dunbar, 2012; Schmälzle et al., 2017; Von Der Heide, Vyas, & Olson, 2014). For example, 

social network structure is associated with activation in mentalizing regions when thinking about 

others’ opinions (O’Donnell et al., 2017), as well as with connectivity within the mentalizing 

system during a social exclusion task (Schmälzle et al., 2017).  

Here, we showed for the first time that social network structure also moderated brain 

systems involved in a non-social task. Adolescents with larger social networks and more 

communities in their networks showed a stronger relationship between brain activation and task 

performance. Adolescents with more communities in their social network also had a stronger 

relationship between task performance and connectivity between the response inhibition and 

self-referential systems. Larger social network structures that have more communities or 

communities that are more segregated (higher in modularity) require individuals to actively 

maintain multiple groups of friends (Hampton & Wellman, 2003; Rainie & Wellman, 2012). The 

ability to actively maintain these groups may in turn be facilitated by (or require) more diverse 

brain systems being recruited for behavioral self-regulation. 

This pattern of results is consistent with recent work showing that peer relationships and 

social context can strongly influence self-control. Children’s self-control is influenced by group 

norms (Doebel & Munakata, 2018), and adolescents who are surrounded by peers with better 

self-control are more likely to show improved self-control over the course of adolescence 

(Meldrum et al., 2012). We found that social network structure was also associated with which 

brain systems help an adolescent regulate their behavior. It is possible that adolescents’ daily 

experiences navigating and managing complex social relationships with multiple distinct 
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communities influence how they use different cognitive strategies or motivational resources to 

complete cognitive tasks such as response inhibition. Alternatively, adolescents who recruit more 

diverse brain systems may be more capable of managing larger and more complex social 

networks. 

Limitations 

 All of the participants in the current work were 16-year-old males, and we are therefore 

limited in our ability to generalize these findings to adolescent females. The original study for 

which these data were collected was primarily concerned with neural correlates of adolescent 

risky driving and was restricted to adolescent males who had recently received their driver’s 

license since this group has the highest statistical risk for accidents on modern roadways. 

Importantly, because this study only included adolescents, we are unable to draw any 

conclusions about the generalizability to other age groups. Because adolescents also differ from 

adults in neural development and performance on response inhibition tasks, it is therefore unclear 

whether the compensatory role of social brain regions identified in this study is unique to 

adolescents or may also be present in adults. 

Moreover, we only measured adolescent’s social networks based on their Facebook 

relationships, and this is only one method to identify social relationships. Future work using 

multiple approaches to collect information about social networks (c.f., Vettel et al., 2018) might 

yield further insights into the link between brain networks and social networks and their 

importance for adolescent development. 

Conclusions 

In the current work, we employed a network approach to analyze brain data and 

examined the moderating role of social networks. This work suggests that adolescents with larger 
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social networks with more communities recruit more diverse brain systems to successfully 

inhibit prepotent responses. Our results demonstrate that the relationship between behavior and 

brain activation, as well as connectivity between brain systems, is dependent on individual 

differences in social networks. These results motivate future work to examine how elements of 

the social networks and interpersonal dynamics influence adolescent brains. 
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Figure Captions 

Figure 1. Recruitment of brain systems during a task requiring response inhibition. (A) Regions in response inhibition (RI: 

red), self-referential (SR: blue), and mentalizing (M: green) systems identified using Neurosynth. (B) Average activation in the 

RI, SR, and M systems for correct No-Go trials versus correct Go trials. (C) Scatterplot of Go/No-Go efficiency score versus 

mean activation of the RI system. (D) Scatterplot of Go/No-Go efficiency score versus mean activation of the SR system. (E) 

Scatterplot of Go/No-Go efficiency score versus mean activation of the M system. 

 

Figure 2. Interaction between response inhibition activation and social brain systems. (A) Relationship between mean 

activation in the self-referential (SR) system and Go/No-Go efficiency scores for adolescents with stronger mean activation in the 

response inhibition (RI) system (solid line) versus adolescents with weaker mean activation in the RI system (dashed line). (B) 

Relationship between mean activation in the mentalizing system and Go/No-Go efficiency scores for adolescents with stronger 

mean activation in the RI system (solid line) versus adolescents with weaker mean activation in the RI system (dashed line). 

 

Figure 3. Relation between inter-system connectivity and Go/No-Go efficiency score. (A) Scatterplot of Go/No-Go efficiency 

score versus connectivity between the response inhibition (RI) system and self-referential (SR) system. (B) Scatterplot of Go/No-

Go efficiency score versus connectivity within the self-referential system.  (C) Relationship between RI system x SR system 

connectivity and Go/No-Go efficiency scores for adolescents with stronger activation in the RI system (solid line) versus 

adolescents with weaker activation in the RI system (dashed line). (D) Relationship between connectivity within the SR system 

connectivity and Go/No-Go efficiency scores for adolescents with stronger activation in the RI system (solid line) versus 

adolescents with weaker activation in the RI system (dashed line). 

 

Figure 4. Social network properties moderate the relationship between brain and behavior.  (A) Relationship between 

activation in the response inhibition system and Go/No-Go efficiency scores for adolescents with more communities in their 

social network (solid line) versus adolescents with fewer communities in their social network (dashed line). (B) Relationship 

between response inhibition (RI) system x self-referential system (SR) connectivity and Go/No-Go efficiency scores for 

adolescents with more communities in their social network (solid line) versus adolescents with fewer communities in their social 

network (dashed line). 
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