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Abstract

Widespread concern over the credibility of published results has led to scrutiny of
statistical practices. We address one aspect of this problem that stems from the use
of balance tests in conjunction with experimental data. When random assignment
is botched, due either to mistakes in implementation or di↵erential attrition, balance
tests can be an important tool in determining whether to treat the data as observational
versus experimental. Unfortunately the use of balance tests has become commonplace
in analyses of “clean” data, that is, data for which random assignment can be stipulated.
Here, we show that balance tests can destroy the basis on which scientific conclusions
are formed, and can lead to erroneous and even fraudulent conclusions. We conclude
by advocating that scientists and journal editors resist the use of balance tests in all
analyses of clean data.
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1 Introduction

As a widely read study begins, “There is increasing concern that most current published re-

search findings are false” (Ioannidis, 2005). In the last ten years the same theme has been re-

peated (Harvey et al., 2014), questioned (Jager and Leek, 2014) and elaborated (Moonesinghe

et al., 2007), leading to 3,000 citations for Ioannidis’ paper alone. The crisis of confidence in

experimental studies is of particular concern because randomized trials are the most credi-

ble source for causal inference. Many responses to the perceived crisis have been proposed,

including replication and advanced registry of statistical models (Humphreys, 2013). Some

responses come in the form of guidelines such as those set forth by Gerber et al. (2014),

the Evidence in Governance and Politics (EGAP) members committee (2011b) and the

Consolidated Standards of Reporting Trials (CONSORT) guidelines (Moher et al., 2010).

Following such guidelines should add to, rather than subtract from, the credibility and

accuracy of findings. Indeed, this is the case with the vast majority of such guidelines.

Here we focus on an exception, namely balance testing of experimental data. In this

case, published guidelines (e.g., EGAP members committee, 2011b; Gerber et al., 2014) as

well as common practices have resulted in less accurate, less credible reporting of results.

1.1 Balance testing

Consider an experiment in which N subjects are each randomly assigned to one of k ex-

perimental conditions. For each subject, a number of measures are available before the

assignment of treatment. A balance test is an analysis of the degree to which the distribu-

tion of these other measures across treatment groups is near its expectation.

Balance tests can be used in one of three ways. Minimally, a table of baseline di↵erences

is displayed, e.g.,

Treatment Control
MALE 32 11

HISPANIC 4 5
50+ YEARS OF AGE 19 16

etc. · · · · · ·
etc. · · · · · ·

Number of subjects 50 25

Table 1: Baseline demographics by condition

2



Second, and most commonly, the term refers to statistical tests for the null hypothesis

that the assignment to treatment is independent of pretreatment data. Typically, this is

accompanied by an interpretation, for example, “Balance tests are not statistically signif-

icant, therefore the randomization was successful.” Third, it is sometimes suggested that

the analysis be run after controlling for any significantly imbalanced covariates (EGAP

members committee, 2011b). The main point of this article is that balance testing is in-

appropriate and potentially harmful whether (i) displaying baseline data, (ii) performing

a statistical test on this data, or (iii) altering the model based on balance tests.

To motivate the thorough examination of these practices, it is important to understand

that in many social sciences balance testing is the rule not the exception, that it occurs

in flagship journals for many fields, and that it is encouraged and sometimes required by

reviewers and editors. To illustrate these practices, we draw from recent experimental

studies in diverse fields such as political science, sociology, psychology, economics, business,

medicine and education.

Frequently, authors state that balance is necessary for inference in experimental designs.

An article in the Journal of Politics explicitly describes this line of reasoning:

In order to ensure that the experimental conditions were randomly distributed

– thus establishing the internal validity of our experiment – we performed di↵er-

ence of means tests on the demographic composition of the subjects assigned to

each of the three experimental conditions.... As Tables 1a and 1b confirm, there

were no statistically significant di↵erences between conditions on any of the de-

mographic variables. Having established the random assignment of experimental

conditions ... we need only perform an analysis of variance (ANOVA) to test

our hypotheses as the control variables that would be employed in a regression

were randomly distributed between the three experimental conditions. (Scherer

and Curry, 2010, p. 95)

Likewise, articles in the American Sociological Review and Social Psychology Quarterly

claim:

Because the vignettes were randomly assigned, confounding would only be an

issue if randomization [referring to a balance test] failed” (Phelan et al., 2013,

2014, p. 178, p. 306).
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Sometimes it is implied that randomizations failing balance tests are not truly random. As

stated in an article in Management International Review,

Analyses of variance were performed to determine if there were any signifi-

cant di↵erences across the experimental cells in the respondents’ age, educa-

tion, work experience, and joint venture experience. There were none, and

thus the subjects were deemed to have been randomly assigned to the various

treatments (Sullivan and Peterson, 1982, page 35).

Further, failed balance tests frequently lead authors to alter their statistical model to adjust

for the imbalance. For example, as suggested by Hutchings et al. (2004, p. 521),

Partisanship is included in the analysis because of imbalances in the distribution

of this variable across the conditions.

Likewise, an article in the American Journal of Political Science suggests that such correc-

tions should increase confidence in the result:

Every relevant variable is randomly distributed across conditions with the excep-

tion of education in Study 1. When we included education in our basic models,

the results were substantially the same as those we report in the text (Berinsky

and Mendelberg, 2005, p. 862); see also Jerit and Barabas (2012); Prior (2009);

Panagopoulos (2011).

Experimental economists also have claimed that balance testing is informative for model

selection:

Even if the randomization was carried out appropriately, it may be informative

to see whether any of the key covariates were by chance relatively imbalanced

between treatment and control group, so that prior to seeing the outcome data

an analysis can be designed that addresses these presumably modest imbal-

ances (Imbens and Athey, 2016, p. 23).

In a similar vein, some authors say that an adjustment would have been performed had a

balance test failed.

Of particular interest is the attitude taken by the influential CONSORT guidelines (Mo-

her et al., 2010), discouraging statistical tests for balance but requiring tables of baseline
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demographics by experimental condition. Most medical journals, including the prestigious

New England Journal of Medicine, follow CONSORT guidelines. These guidelines go a long

way toward ensuring the quality of statistical analyses; however, their treatment of balance

is confusing at best. Their recommendation for detatiled descriptions of the randomization

mechanism is a good start. But then they require a table of “baseline demographic and clin-

ical characteristics for each group” (p. 6). As a result, a balance table appears prominently

as Table 1 in every publication in every journal adhering to CONSORT1. Likewise, the

standards posted for the Journal of Experimental Political Science (APSA Standards Com-

mittee, 2014, Section C) require authors to supply “a table (in text or appendix) showing

baseline means and standard deviations for demographic characteristics and other pretreat-

ment measures by experimental group” (pps. 84, 93). In both cases, no advice is given as to

which demographics or other characteristics are relevant for these purposes. Further, it is

unclear what one is to make of the table. CONSORT advises against testing for statistically

significant di↵erences in the table. But the table is still required because “The study groups

should be compared at baseline for important demographic and clinical characteristics so

that readers can assess how similar they were” (Moher et al., 2010, page 14). How a reader

decides if the groups were similar is left open, as is what to do if one suspects an imbalance

of some kind. Further, all such guidelines leave open the possibility for adjusting based on

an observed covariate imbalance. For example, CONSORT advises that authors “should

clarify the choice of variables that were adjusted for, . . . and specify whether the analysis

was planned or suggested by the data” (p. 14).

1.2 Clean experiments

In an observational study, any imbalanced covariate is a possible explanation for a spurious

relationship. Therefore, an analysis omitting the variable is suspect. Sometimes an experi-

ment can be compromised in a way that renders the data essentially observational, that is,

not modeled by a probability distribution on assignments to treatment, independent of all

else that has occurred prior to the treatment. There is, however, a limited number of ways

that random assignment can be compromised. First, the randomization mechanism could be

faulty. Nowadays the prevalence of perfectly good randomizing apps on computers, tablets

and even phones has nearly eliminated malfunction in the random assignment mechanism.

1As the CONSORT guidelines note, Assmann et al. (2000) suggest that over half of papers from presti-
gious journals report the statistical significance of balance tests.
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Although one can certainly point to examples where randomization went awry (Heeringa,

2001; Conroy-Krutz and Moehler, 2016; Gerber and Green, 2000), in only one example of

which we are aware was a balance test useful in detecting the problem (see Imai, 2005, for

details). In most cases, a description of the randomization procedure would have su�ced

to detect the fault (Heeringa, 2001; Conroy-Krutz and Moehler, 2016; Gerber and Green,

2000). When detected most such problems cause the data to be treated as observational.

No amount of control variables will render it analyzable as experimental data.

Aside from a faulty randomization mechanism, there is one additional circumstance

under which an experiment cannot be analyzed cleanly. This is when di↵erential attrition

may have occurred. This means that the likelihood of a subject dropping out of the study

is a↵ected by the treatment, with di↵erent treatment conditions leading to di↵erent rates

of attrition. In this case, the assumption has been violated that the (remaining) subjects in

di↵erent experimental conditions are statistically similar. Importantly, only attrition that is

di↵erential over treatment groups poses a threat to internal validity. Considerable attention

has been devoted to handling this case (see, e.g., Gerber and Green 2012, Chapter 7). We

exclude cases subject to di↵erential attrition from the definition of “clean data”.

In all other cases, namely when randomization occurred, treatments were delivered, and

di↵erential attrition did not occur, we call it a clean experiment. A clean experiment

allows precisely quantifiable statistical inferences to be made about causal relations.

1.3 Messy analyses

Procedures are available to reduce random error and thereby increase the e�ciency of

experimental analyses. Each possible procedure yields a potentially di↵erent estimate,

with di↵erent confidence bounds and a di↵erent interpretation. Many of these procedures

can help to reduce the noise to signal ratio, but they are not necessary for the internal

validity of experimental conclusions.

Consider these four reasons for including covariates in a model for an experimental

analysis:

(i) Covariates widely believed to predict the dependent variable may be included to reduce

the noise to signal ratio, increasing e�ciency.

(ii) Covariates may be included because the advanced plan for the analysis was to include
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everything in the data set on the o↵ chance that these variables might provide a more

e�cient analysis.

(iii) Covariates may be included because their distribution is unbalanced across treatment

groups.

(iv) Covariates may be included because, among several analyses, the one with that specific

set of covariates was the one that produced the cleanest, most significant findings.

Most would agree that (i) is a good reason2 and that (iv) is dishonest. The contended

middle ground consists of (ii) and (iii). Our point in this paper is to address (iii), and to a

lesser extent (ii). As we discuss in the next section, conducting balance tests leads to their

use in model selection. This occurs because many researchers find (iii) to be a compelling

justification, and even those who don’t find it compelling receive pressure from editors and

reviewers to use balance tests in model selection. Including covariates for this reason is not

only unnecessary with clean data, but as we will show, it is not even helpful to do so, and

may in fact be damaging. Thus, the thesis of this paper is that one should not perform

balance tests on clean data.

1.4 The case against balance testing with experimental data

A number of criticisms of balance testing in the experimental context are old but bear

repeating. First, as pointed out on multiple occasions (e.g., Senn, 1994), a statistical test

for the hypothesis that the conditions were randomly assigned is meaningless if one already

knows that the conditions were randomly assigned. Secondly, if there is a great number of

pre-treatment variables, then one should find significant imbalance on at least one variable,

so what is one to make of a flunked balance test? To address this concern, Hansen and

Bowers (2008) and others have developed omnibus balance tests that take into account

the number of variables examined for balance. But the question of what to make of a

failed balance test (omnibus or otherwise), or an apparently lopsided table of pre-treatment

variables, remains largely unanswered.

2Even this is not an open and shut case. As pointed out in Berk et al. (2016), “Still, one has to
wonder if any of these covariance-based options are really worth the trouble. Simple di↵erences in means
or proportions are unbiased ATE estimators under the Neyman model [...] Possible gains in precision from
covariance adjustments are in principle most needed with small samples, a setting in which they currently
have no formal justification.”

7



More fundamentally, a balance test appears to be an attempt to reduce the probability

of Type-I error by checking whether the randomization was an “unlucky draw”. When we

make an assertion at the confidence level of, say, 0.01, we are asserting that only 1% of

randomizations would have produced such results under the null hypothesis. The underlying

statistical theory contains no information as to when one has encountered one of these

“unlucky draws”. Despite this, a great number of scientists believe that they can tell

when an unlucky draw is likely to have occurred and that balance tests are instrumental

in doing so. When a false positive result occurs, it is due to an anomalous distribution

of the (adjusted) dependent variable across treatment conditions. The intuition that this

coincides with unequal distribution of pre-treatment variables operates outside any model

and therefore provides no scientific conclusion as to the likelihood of an unlucky draw, nor

what to do in the event of one. Section 4 addresses unlucky draws in a quantitative way,

exploring what sort of model one could develop and what it would say about the likelihood

of detecting unlucky draws using balance tests.

Consider an experiment with two conditions (treatment and control), in which for each

subject there is one outcome measure (the dependent variable) as well as p available pre-

treatment measures (covariates). We may choose any subset of covariates to include in the

model, so there are 2p possible models for estimating treatment e↵ects by linear regression.

Any one of these, when specified in advance, leads to a quantifiable statistical conclusion.

What does not lead to any scientific conclusion is the following procedure, which we call

“balance test and adjust” (BT&A): select zero or more covariates for the model; then if

the researcher observes any ways in which other pre-treatment measures are not balanced

across treatment groups, include those variables as well. The main point of this article is

to show why this is a bad idea, how the conclusions are weakened when researchers do so,

and why this practice threatens the integrity of the scientific process. In particular we will

argue that

• Confidence statements are wrong (see the Appendix of Permutt 1990).

• The wrong statistical model is chosen (Theorems 1 and 2 below).

• Absolutely any result can be obtained when there are su�ciently many covariates (Pham,

2016, Theorem 2.1).

• In typical experimental settings, BT&A can easily lead to a false boost that pushes
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the p-value across a threshold such as 0.05 or 0.01 (Table 2 below).

In the next section we begin by recalling the basic statistical paradigm as set forth by

Fisher, Rubin and others. In Section 3 we discuss the probability models underlying various

analyses and the lack of such a model for BT&A. When a probability model is introduced,

it belies the confidence statements resulting from such a procedure. We then show that

BT&A always produces an inferior choice of covariates relative to what could be chosen

without balance testing. In addition to post hoc adjusting via covariates, adjustment via

post-stratification is also shown to be sub-optimal. In Section 4, we analyze a formal model

in which the reduction of Type-I error when weeding out unlucky draws is shown to be

small compared to the introduction of Type-II error. The tradeo↵ is worse than would be

obtained by other means. In Section 5 we discuss more quantitatively the potential harm

done by the incorrect inclusion of covariates.

2 Statistical framework

2.1 Randomization

Random assignment, while not guaranteeing to distribute any one characteristic perfectly

among treatment groups, stochastically distributes all characteristics, known and unknown3.

No non-random assignment, matching included, can do this. As a result, random assign-

ment allows scientists to make mathematically precise inferences. For this reason, random-

ized trials are known as the gold standard for inference about causation.

The price one pays for stochastic equalization of all factors, known and unknown, is

the addition of noise. This results in a quantifiable chance of any given relation appearing

to be true due to random fluctuations. The fact that the probability of such an illusion

is quantifiable, irrespective of the precise pathway by which a random assignment might

produce this illusion, is the crowning jewel of the method of random assignment. Any infer-

ence comes with a confidence statement asserting that some null or alternative hypothesis

would have probability less than p of producing such an illusion. What makes such analyses

scientific is that there is an underlying model, that a mathematical statement can be made

about the model, and, to the extent that the model is true, we can be certain about the

3If the only concern is balance on a small known set of covariates, then the optimal procedure is some
sort of blocking or matching; this avoids the errors of order N�1/2 introduced by randomization.
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(probabilistic) conclusion.

The statistical models that underlie confidence statements do not di↵erentiate between

a “good” or “bad” randomization. Anyone who talks about balance testing in terms of

establishing “successful randomization” has lost track of the statistical model. The main

problem with balance testing is that it leads to conclusions outside of any statistical model.

In Section 4 we construct a probability model that could plausibly underlie the use of

balance tests in weeding out potential spurious findings. In order for this to be helpful, one

must assume that the researcher made a sub-optimal choice in omitting from the analysis

one or more variables known or suspected of predicting the dependent variable. Even in

these cases, we show that the degree to which conclusions might be altered is relatively

small.

2.2 The role of conditional bias

The next most common confusion is the status of an estimator that ignores available vari-

ables: is it unbiased, conditionally unbiased or neither, and how important is this? To

answer, it is important to keep in mind precisely what is being estimated. Consider, by

way of example4, the simplest experiment in which one must choose between two linear esti-

mators, one a simple di↵erence of means and the other adjusted by a covariate. Specifically,

we suppose that N subjects (N is even) have been divided uniformly and randomly into

two equally sized groups. Let Ti, 1  i  N denote which treatment is given to subject i (1

for treatment, 0 for control), let Yi, 1  1  N denote the values of the dependent variable,

and let Zi, 1  i  N be the values of a single pre-treatment measure5. Letting {⇠i} denote

independent mean zero noise, the linear model

Y = ↵+ �T + ⇠ (1)

produces an estimator of the treatment e↵ect given by

�̂0 :=
C(T, Y )

V (T )
. (2)

4We avoid repetition by discussing one representative scenario instead of all variations; qualitatively, our
arguments and conclusions remain unchanged across these possible scenarios.

5These values are taken as fixed, not random. The model does not address whether there are underlying
true values, of which Zi are noisy measures.
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Here and in what follows, C(T, Y ) denotes the empirical covariance N�1PN
i=1(Ti�T )(Yi�

Y ) and V (T ) denotes the empirical variance C(T, T ). Because we have two groups of equal

size, V (T ) is a constant and �̂0 is just the di↵erence in sample means in the two conditions.

If the model (1) is correct, then �̂0 is an unbiased estimator of �. As pointed out

by Freedman (2008b), the Neyman-Rubin model provides a far more general setting in which

�̂0 estimates a quantity of interest and is unbiased. Following Freedman’s exposition, we

suppose a value of the outcome measure exists for all subjects in both conditions, treatment

and control. This holds in the linear model: one can simply change the value of Ti to see

what the outcome would have been in the other condition6. Clearly the Neyman-Rubin

model makes fewer assumptions than does the linear model (1) 7.

In the linear model (1), �̂0 estimates the model parameter � which has a clear inter-

pretation as the amount treatment adds to the dependent variable. If instead one only

assumes the Neyman-Rubin model, then �̂0, the empirical di↵erence in means, is an unbi-

ased estimator of the mean within-subject di↵erence between the treated and not-treated

values of the dependent variable over the subject population. No linearity assumption is

required. Within-subject linearity is automatic because there are only two possible values

of the dependent variable.

Suppose now one augments the linear model to include the covariate:

Y = ↵+ �T + �Z + ⇠ . (3)

One may then estimate � by regressing on both T and Z, obtaining

�̂ :=
C(T, Y )V (Z)� C(T, Z)C(Y, Z)

V (T )V (Z)� C(T, Z)2
. (4)

As an estimator of � in (3), �̂ is unbiased. Under the Neyman-Rubin causal model, when

the linear model (3) fails, �̂ is not in general an unbiased estimator of treatment e↵ect. This

is noted by Freedman (2008a), who gives conditions under which this estimator, despite

having bias, outperforms the simple estimator �̂0.

The notion of conditional bias or lack thereof is somewhat of a red herring. Because

6If ⇠i is not independent of Ti, just conditionally mean zero, then this involves a possible mean zero
change in ⇠i as well.

7Even the Neyman-Rubin model involves counterfactual suppositions whose philosophical grounds could
be shaky, as is vividly explained by Hofstadter (1980, pages 633–640).
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we know Z, it would seem that conditional unbiasedness given Z is a decided advantage,

but this is not a general truth. Conditional unbiasedness means that the estimator has the

correct mean given the values of Z for all values of the model parameters. If we have reason

to believe the coe�cient of Z is zero or very small, it does little good to demand lack of

bias in the event that Z is a strong predictor. This can be seen most clearly in the case

where Z and Y are independent. It is intuitively clear that the estimator �̂0 that ignores

Z should perform better than the estimator �̂ that uses irrelevant information. In fact, the

latter is equal to the former plus a quantity that is a noisy estimate of zero. The di�culty

is we do not know whether Z is independent of Y . We can choose to estimate its e↵ect and

include that in the computation or we can choose not to.8 By making the correct choice,

we hope to obtain a less noisy estimate of Y .

It cannot be stressed enough that the researcher always makes this choice. This choice

involves judgment based on previous experience. It cannot be demonstrated to be correct

within the model. The researcher can choose to include Z, exclude it, or even flip a coin.

The researcher could allow pre-treatment measures to influence the model, as in BT&A 9

Section 3 of this paper is devoted to showing that no matter what the available information,

there is a choice indpendent of pre-treatment measures leading to a better estimate than

BT&A.

2.3 E�ciency versus credibility

We use the term “credibility” to refer to our trust that the reported findings represent the

true state of a↵airs, or in other words, that a false positive has not occurred. Depending

on one’s philosophy, this could mean that replication would produce similar results, or that

changing the treatment variable would cause a change in the outcome with average size in

the given range, or would in the future cause such a change. A smaller p-value increases

the credibility of a causal finding. A suspected flaw in the experiment decreases credibility.

Credibility can also be decreased for subjective reasons, such as disbelief in the theoretical

explanation or strong prior beliefs as to the likelihood of the purported findings.

8It is on this point that the generally helpful EGAP recommendations may be misleading. They explain
that including a covariate on which imbalance is observed can help to “retrieve the conditionally unbiased
estimate.” (EGAP members committee, 2011a, Section 6). The implication is that adding covariates due to
their imbalance is advocated. Section 7 goes on to warn against adding non-prognostic covariates, but it is
doubtful that this entirely dispels the implication in Section 6.

9This would need to be pre-specificed if inferences are to remain valid.
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Researchers care not only about false positives but also about reducing the rate of false

negatives. The precision to which an e↵ect has been estimated a↵ects the significance of the

results. Thus, greater precision goes hand in hand with greater e�ciency. However, once

significance is summarized in a p-value, information about precision is no longer related

to credibility. The same goes for sample size, degrees of freedom and so forth; these help

to determine significance, but do not further a↵ect the credibility of a finding beyond the

information captured by the p-value.

Covariates can be very helpful for purposes of increasing precision. A measure known or

suspected to predict the dependent variable, when included in the design (blocking, match-

ing) or the analysis (as a covariate), can greatly reduce the variance within experimental

conditions, leading to more e�cient tests and more precise estimates. Because of this, it

is generally a mistake not to include in the model a variable known or strongly suspected

to predict the dependent variable. This mistake a↵ects the significance level that can be

obtained for a given e↵ect size, or the e↵ect size that can be inferred at a given significance

level. However, a conclusion with a given p-value is not less credible than any other result

with the same p-value just because one did not obtain the precision that one could have by

including covariates.

Unfortunately we have seen many formal and informal responses to balance tests along

the following lines: “Covariate Z was not balanced across treatment groups. I will not

believe your estimate of the e↵ect of treatment T on the dependent variable Y with stated

confidence level p < ↵ unless you change your model to include Z as a covariate.” Such

a statement confuses e�ciency with credibility. A better reasoned statement would be, “I

bet you would have more precisely estimated the e↵ect of T on Y had you included Z as a

covariate in the model.” The latter statement suggests that more convincing evidence (for

example a lower p-value) could be marshalled by adding the covariate Z to the model, but

correctly says nothing about the credibility of the existing model.

Interestingly, such a comment is rare when the covariate Z is well balanced across

treatment groups. The inclusion of Z in the model would not in that case change the

estimate of the treatment e↵ect, however it could potentially change the confidence interval

in either direction. The di↵erence in prevalence of such responses when Z is imbalanced

versus balanced is a good proxy for the level of misunderstanding about whether covariates

are included for the purposes of credibility or e�ciency.
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The question of whether the experimenter should have included the covariate in the

model is a valid one, though it does not address the credibility of the result that was actually

obtained. One should choose covariates for their anticipated relation to the dependent

variable. To alter this choice because of a balance test is to choose based on a relation with

the independent variable. In Section 3 we will show that ex ante considerations (the extent

to which the covariate is expected to predict the dependent variable) are always better than

using the results of a balance test when choosing covariates for a model.

3 Possible models for BT&A and their consequences

In this section we consider possible models for balance testing and adjustment and the

conclusions to which they lead. In all cases, legitimacy rests on pre-determining one’s

actions. Changing decisions about whether to re-randomize, alter the analysis, re-interpret

the conclusion and so forth will undermine any scientific basis for the conclusions.

The first possibility is balance testing without adjustment. Indeed, the guidelines from

CONSORT and the Journal of Experimental Political Science (APSA Standards Commit-

tee, 2014) mandate presenting tables of pre-treatment measures; no adjustment is recom-

mended and one is left to guess how such a table might be used. Each reader is left to

change his or her opinion based on subjective assessments of the balance test. Given what

we know about the propensity of readers to confuse e�ciency with credibility, to confuse

conditional unbiasedness with accuracy, stochastic equidistribution with balance, p-values

with posteriors, and so on, providing a table of balance with no further instruction seems

like a decidedly bad idea.

A second possibility is that the result of the balance test may be used to select covariates

for the model. This is, for example, what is recommended by the EGAP members commit-

tee (2011a)10. This, at least, can be formally modeled and scientifically valid consequences

computed. Subjects are recruited, pre-treatment measures gathered and random assign-

ments made, after which covariates are selected according to a pre-specified algorithm, and

the analysis conducted.

But this sequential procedure is a di↵erent probability model than any model choosing

that chooses covariates in advance, and as such, has di↵erent confidence levels. Such a

sequential analysis has been analyzed precisely once, to our knowledge, by Permutt (1990).

10This advice was modified in 2016 and now provides no indication of how to use balance test results.
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This analysis concerns a model in which the treatment and a single covariate have jointly

Gaussian distribution with unknown correlation, and the model includes the covariate if and

only if the empirical correlation between the treatment and the covariate exceeds a certain

threshold. The correct confidence statements are shown to di↵er from those obtained from

the standard analysis of the model chosen in each case. In cases with a greater number

of potential covariates, we know of neither theory nor empirical work that can guide the

assessment of confidence levels.

3.1 Sub-optimality of BT&A

Another problem with choosing covariates based on the results of a balance test is that

such procedures are never as good as choosing covariates ex ante11. To make this presicse,

we concentrate on a model with N subjects assigned at random to one of two treatment

conditions. The treatment variable Xj is 1 if subject j is in the treatment group and 0

if subject j is in the control group. There is one pre-treatment measure Zj available for

inclusion in the model if desired. The dependent variable is Yj . Let X,Y and Z denote the

empirical means and let C denote the empirical covariance, thus,

C(X,Y ) = N
�1

NX

j=1

(X �X)(Y � Y ) .

Let V (X) = C(X,X) denote empirical variance. The estimators

�̂0 =
C(X,Y )

V (X)
(5)

�̂ =
C(X,Y )V (Z)� C(X,Z)C(Y, Z)

V (X)V (Z)� C(X,Z)2
(6)

are the result of regressing Y on X alone or on both X and Z, respectively.

Suppose that the truth is given by the linear model

Y = µ+ �X + �Z + ✓⇠ (7)

where ⇠j are independent mean zero unit variance noise terms. Despite the omission of

11More precisely, any sequential procedure can be dominated by an ex ante procedure based on the same
available informtation, excluding the balance test.
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Z from the first model, both �̂0 and �̂ are unconditionally unbiased estimators of �. The

variance of Y explained by Z is �2EZ2, while the variance unexplained by either X or Z is

the variance ✓
2 of the noise term. The ratio

T :=
�
2

✓2
V (Z)

is a parameter of the model measuring the portion of variance of Y explained by Z. The

following result is proved in the Online Appendix.

Theorem 1. Given the X and Z variables, let r2 = C(X,Z)2/(V (X)V (Z)). Then E⇤(�̂�

�)2 < E⇤(�̂0 � �)2 if and only if if T > N
�1

/(1 � r
2), where E⇤ denotes conditional

expectation with respect to the X and Z variables.

To understand what Theorem 1 is saying, keep in mind that r2 is known before treat-

ment, but that T is a hidden parameter, never known to the experimenter. If T were

known, one could be certain whether including Z in the model increased or decreased the

variance of the resulting estimator. One doesn’t know T , but one can calculate the thresh-

old t = N
�1

/(1 � r
2). This threshold increases with r. The experimenter always has to

guess how strongly Z predicts Y . This result says that one should be less inclined to include

Z, not more, if you see that Z is imbalanced (r2 is large). For example, in the hypothet-

ical study in Table 1, suppose it is unclear whether the “Hispanic” variable is su�ciently

predictive of the dependent variable to include in the model. The underrepresentation of

Hispanics in the treatment group means you need a stronger belief in the likely e↵ect of

race on the outcome to make the case for inclusion than you would if the distribution of

Hispanics had been closer to its mean.

An intuitive explanation is that collinearity between the treatment and the covariate

introduces uncertainty as to which is responsible for any variation predicted in the depen-

dent variable. The threshold, it should be noted, is small, and minimizing the variance

of the estimator is far from the only goal. Theorem 1 does not dictate what variables to

include, but it does imply that a failed balance test is not a good reason for including a

variable in the analysis.

What if the experimenter omits a variable from the analysis that really should have

been included? Might not its appearance on a failed balance test be useful as a reminder or

alert? Failure to include this variable will reduce the e�ciency of the experiment. On the
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other hand, surely the experimenter can take responsibility for running over this mentally

before covariates are chosen. Any covariate which one would be tempted to include should

it flunk a balance test, should be included from the start. The contrapositive of this is, if

it is not worth including from the start, then a failed balance test should not change one’s

mind.

3.2 Sub-optimality of BT & post-stratify

For completeness, we discuss one more possible response to a failed balance test, namely

post-stratification. Our discussion will be brief because this situation is largely analogous to

the selection of covariates. Post-stratification is a means of increasing e�ciency. As such, it

is not relevant to credibility. As was the case with selection of covariates, post-stratification

is meant for cases where a substantial relationship between the dependent variable and the

covariate is anticipated. For example, Miratrix et al. (2013) warn that “post-stratifying on

variables not heavily related to outcome is unlikely to be worthwhile and can be harmful.”

One can make this statement precise by considering a sequential design, in which one

first tests for balance on a covariate Z, then post-stratifies on Z only if Z fails the balance

test. Again, a threshold may be computed for the portion of variance of the dependent

variable that a dichotomous covariate must predict in order for stratification by this variable

to produce a net reduction in MSE of the treatment estimate. In the Online Appendix we

prove the following result, giving the threshold as a function of the distribution of the

covariate across treatment groups:

Theorem 2. Consider two estimators of a treatment e↵ect, one the simple di↵erence of

means estimator and one post-stratified by a covariate taking the values 0 and 1. The post-

stratified estimator will have a lower MSE than the simple estimator if and only if the ratio

of variance in the dependent variable predicted by the covariate to the unpredicted variance

is greater than
1

n

[ab(a+ b) + cd(c+ d)](a+ b)(c+ d)

abcd(a+ b+ c+ d)
.

Here, a, b, c, and d are the respective sizes of the groups of controls with covariate value 0,

controls with covariate value 1, treated subjects with covariate value 0 and treated subjects

with covariate value 1.

The threshold is somewhat complicated, but it is minimized when the group sizes are
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equal, and it always grows when the distribution of the covariate within a treatment group

becomes more imbalanced. This means that a failed balance test is not a good reason

to perform a stratified analysis. If a balance test fails, the threshold for stratification to

improve e�ciency increases rather than decreases.

4 Detecting the unlucky draw

We have discussed three common reactions to a failed balance test: doing nothing, including

more covariates in the model, or changing to a post-stratified analysis. A fourth possible

reaction is to modify the conclusion, either by throwing it out entirely (declaring it not

credible) or by altering the confidence statement accompanying the conclusion, e.g., “We

found an e↵ect significant at the level of p < 0.01 but because the randomization was bad,

we should be less confident.” This section examines the use of balance tests to weed out

unlucky instances of randomization or to modify conclusions in such a case.

There is an immediate foundational problem: probability theory, as it is currently for-

malized, does not provide a definition of randomness for an instance of randomization. If a

coin is flipped one hundred times independently, then with probability 2�100 it should come

up heads every time, and this outcome is no less “random” than any other given sequence

HTTHTHH · · ·HT , which should also arise with probability 2�100. The probability model

of independent coin flips applies only to the collective description of all possible sequences

that could have occurred.

There is considerable divergence between the mathematical theory of probability, which

underlies statistical inference, and the common practice and understanding of probabilities.

These have been well documented and occur even among well trained users of statistical

methods; see, e.g., Hastie and Dawes 2010; Kahneman et al. 1982. Most relevant here is

the strong and seemingly universal urge to classify individual sequences as “successfully

randomized” or “unsuccessfully randomized”. Definitions for randomness of an individual

sequence have indeed been put forth, mostly in the context of pseudo-random number

generation (Kolmogorov, 1998; Martin-Löf, 1966). These definitions typically apply only

to infinite sequences and none is widely used in probability theory or statistics.

To analyze what happens when balance tests are used for weeding out unlucky draws,

one must create a probability model for the situation where the distribution of covariates
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across conditions is analyzed, and a certain randomization is flagged as “unsuccessful”.

There are two possible scenarios, depending on whether the option exists to re-randomize.

If each subject is randomly assigned and treated before the next subject arrives, then re-

randomization is not possible. Likewise, re-randomization is not possible when a balance

test is requested by a reviewer.

Re-randomization

Assuming the re-randomization is done by creating an entirely new random assignment

schedule, the correct probability model is rejection sampling. Assignments are divided into

two well defined sets, with the rejected set typically of much smaller probability than the

acceptable set. If the random assignment is from the rejected set, it is discarded and a

new assignment is chosen, repeating until the chosen assignment is from the acceptable set.

Mathematically, all one has done is to replace the uniform measure on random assignments

by the uniform measure on the acceptable set.

A treatment of re-randomization via rejection sampling can be found in Morgan and

Rubin (2012). They provide philosophical arguments for and against re-randomization,

along with a mathematical analysis. For example, when the treatment and control groups

are required to be of equal size, then any rejection criteria symmetric with respect to

switching the two groups leads to an unbiased estimator under rejection sampling (Morgan

and Rubin, 2012, Theorem 2.1 or the more general Theorem 4.1). They give an example of

a criterion involving the Mahalanobis distance between the distributions of the treatment

and control groups and compute the reduction in variance obtained by rejecting when the

distance is above a threshold.

Morgan and Rubin state directly, “We only advocate rerandomization if the decision

to re-randomize or not is based on a pre-specified criterion.” Thus, they stay within

the paradigm of rejection sampling as described above (see Morgan and Rubin, 2012,

page 1267). Potential drawbacks of re-randomization are that it can lead to biased es-

timates, incorrect confidence statements (usually ones that are too conservative) and can

invalidate Gaussian approximations. Morgan and Rubin state explicitly (cf. Section 2.3

above) that the advantage of their method is the reduction of variance, leading to “more

powerful tests and narrower confidence intervals;” in other words, greater e�ciency. Their

paper makes no mention of credibility of findings.
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Post-hoc adjustment, that is, BT&A

We turn next to the more common case of post-hoc adjustment based on the result of a

balance test. Suppose that an experiment finds a treatment e↵ect to be significant at the

level of p < 0.05. A balance test is conducted. Should we revise our inference in light of the

result of the test? The intuition is that we should believe the result more if there is balance

and less if there is not. The p-value is the probability of a false positive of at least this

magnitude under the null hypothesis. A false positive is, by definition, undetectable because

it looks just like a true positive. Covariate imbalance, however, is detectable. If researchers

are interested in using the results of the balance test to help us avoid false positives, the

question becomes: will the occurrence of a false positive (undetectable) su�ciently often

be indicated by covariate imbalance (detectable)?

In one sense the answer is disappointing: this depends highly on the parameters of

the model. In particular, it depends on the extent to which the covariate predicts the

dependent variable. One cannot, therefore, expect to compute this in advance except

by imposing assumptions that are necessarily subjective. In another sense, though, the

answer is surprisingly concrete. Given particular assumptions, the number of false positives

ensnared by a particular balance test is precisely computable because it is a feature of the

null hypothesis, a well defined probability model.

We illustrate with some computations in a theoretical model. In order to incorporate the

unknown predictive value of the covariate, we allow the covariate to be a random variable.

We suppose there are 2N subjects divided randomly into a treatment and a control group,

each of size N . There is one dependent variable, Y , and one potential covariate Z. The

treatment estimator �̂ is the di↵erence in means of Y between the treatment and control

group. The balance statistic � is the di↵erence in means of Z between the treatment and

control group. The treatment e↵ect is judged significant if �̂ > b (one-sided test) or |�̂| > b

(two-sided test) for some constant b. The covariate is judged to be out of balance if |�| > d

for some constant d. It remains to specify the distribution of (Xj , Zj , Yj).

In order to examine false positives we assume the null hypothesis, that is, independence

of Xj and Yj ; because Z is a pre-treatment measure and X is a random assignment, this

implies independence of Xj from the pair (Zj , Yj). For the distribution of (Zj , Yj), because

this is an illustrative model, we use a distribution suited for computation, namely a bivariate

normal. The correlation ↵ is a parameter of the model; the remaining parameters are scale
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parameters and do not a↵ect the computations.

Proposition 3 (bivariate normal null model, one-sided test). Suppose the common distri-

bution of (Yj , Zj) is bivariate normal with correlation ↵ 2 (0, 1). Then the portion of false

positives that would occur for a one-sided test rejecting the null hypothesis with probabity p,

but are weeded out by a two-sided balance test with rejection probability q, is given by

1

2⇡

Z 1

q

Z r�↵yp
1�↵2

�r�↵yp
1�↵2

e
� 1

2 (y
2+w2)

dy dw . (8)

⇤

What does this say for specific values of ↵, b and d? Suppose b = d = 0.05 as is most

commonly the case in published articles. When ↵ = 0, this tells us something we already

know: 2.5 thousandths of the time a false positive is rejected due to a (coincidental) failure

of a balance test. Of course this means nothing because an equal proportion of true positives

are rejected. More interesting is the fact that this does not increase all that much with ↵.

For example, when ↵ = 0.3, a false positive is weeded out 3.9 times in a thousand

trials. There are 50 false positives in every thousand trials. The number of false positives

weeded out when a balance test is performed with a covariate having correlation 0.3 with

the dependent variable is just 1.4 per thousand higher than is obtained by witch-hunting (a

balance test for a completely irrelevant variable). This represents an additional 3% of all

false positives. The e�cacy of this must be measured against the true positives that will

be discarded. Furthermore, it should be stressed that a variable has been excluded from

the original analysis whose correlation with the dependent variable is 0.3. A much better

procedure would be to plan to include this variable in the original analysis if it is known to

be a strong predictor12.

12The same reduction in false positive rate could be obtained simply by testing significance at a 4.5% level
instead of a 5% level. This makes the Type-I error the same as in the balance test scenario. Because the
test is much more e�cient, the Type-II error is far less than for a simple di↵erence of means test, whereas
balance testing and rejecting always produces a greater Type-II error.
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5 How easy is it to cheat?

Outright fishing for an analysis that will yield significance is of course quite di↵erent from

a post-hoc adjustment of the model due to the specific concern of covariate imbalance.

Nevertheless, any argument that parsimonious model selection helps to ensure credibility

of results must examine the degree to which credibility is threatened when a model incor-

porates more covariates than are justified in the planning (and perhaps registration) phase.

Furthermore, as discussed at the end of this section, variables that fail a balance test are

particularly likely to aid in data dredging 13.

If the supply of potential covariates is unbounded, then by selecting an appropriate

subset for the model one can produce an arbitrarily large apparent treatment e↵ect, with

an arbitrarily small apparent p-value (Pham, 2016, Theorem 2.1). This threat to credibility

is often dismissed due to the perception that it would take a great deal of snooping through

a great number of potential analyses before identifying one that altered the findings in any

meaningful way. Only by sifting through more data than is feasible or by reducing the

degrees of freedom to a level that rings alarm bells, it is argued, can results be rigged.

Quantitative studies of this issue are di�cult to come by. Multiplying the p-value by the

number of analyses that have been run (or that could have been run) gives valid confidence

statements but is overly conservative because the analyses are not independent. We know

of only one paper quantifying this, namely the work of of Berk et al. (2013). Their results,

which apply to observational as well as experimental data, give estimates for the maximum

significance over a family of estimators. Their examples are more of theoretical interest

than of practical use.

In order to give some insight into the feasibility of manipulating results by selecting

among potential covariates, Pham (2016) considers a model in which one dichotomous

treatment variable X and a set of dichotomous potential covariates {Z(k)} are all, in fact,

independent of the dependent variable Y . Synthetic data is generated for N subjects, after

which a subset S of covariates is sought for which the analysis of the linear model with

covariates {Z(k) : k 2 S}, if analyzed in the usual way, produces an apparently significant

rejection of the null hypothesis (regression coe�cient of Y on X is zero) at a 5% confidence

level. The subset S is found via dynamic programming. Each trial records the size of S as

13Gelman and Loker (2014) point out that data dredging can often be unintentional, thus the discussion
concerns not only rare cases of fraud, but a circumstance arising in many, perhaps most studies.
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well as the number m of variables that were examined by the program. The value of m is

important because it cannot exceed the supply of potential covariates.

The simulations are summarized in two tables, the first covering all the data sets that

were generated and the second restricted to a subset of borderline cases. Table 2 tabulates

the means of |S| and m over all of the synthetic data sets, as well as the frequency with

which S has size 1. Many datasets such as those gathered under the auspices of the NSF-

supported Time-sharing Experiments for the Social Sciences routinely include dozens of

potential covariates for each subject. In other words, values of m ranging from 20 to

perhaps 60 are not uncommon in contemporary survey-experimental data. This translates,

according to Table 2, to a great likelihood of finding a set whose inclusion as covariates

would create a false significant finding of a treatment e↵ect.

N Mean size of S Mean of m frequency S has size 1
50 10.8 24.6 3.5%

100 15.0 37.4 2.5%
200 20.9 53.1 1.4%
400 30.2 75.8 1.0%

Table 2: Mean size of a set S of covariates needed for a false positive, as well as the mean
number m of potential covariates considered by the dynamic programming algorithm in
order to arrive at the successful set, S

A related finding concerns the use of covariates to boost significance over a given thresh-

old, such as the all-important p < 0.05 mark, termed “p-hacking” by Simmons et al. (2011);

see also Ellenberg (2014, page 153). Table 3 tabulates synthetic data over those instances in

which the original p-value lies between 0.05 and 0.10. When we look at the use of irrelevant

covariates to boost a p-value from the range [0.05, 0.10] to a significant result (p < 0.05),

the results are even more striking because it is quite common that only one covariate is

needed in order to boost significance across the commonly accepted threshold.

N Mean size of S Mean of m frequency S has size 1
50 2.0 7.8 49.7%

100 2.3 8.6 44.4%
200 3.2 11.4 25.2%
400 3.9 14.2 21.0%

Table 3: Mean size of a set S of covariates needed for a false positive, as well as the mean
number m of potential covariates considered by the dynamic programming algorithm in
order to boost significance of a p-value in the range [0.05, 1] to p < 0.05.
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The size of S is important because the justification of S becomes more di�cult the larger

and more arbitrary it becomes. However, a single covariate is unlikely to raise eyebrows.

A reasonable question here would be how likely it is to turn up such a covariate as a result

of a failed balance test. One might naively expect that the single covariate a cheater would

like to use is significantly out of balance only 5% of the time, but this is not true. Pham

(2016) examined this for the cases in Table 2 and found that the portion of the time that

the covariate in question failed a p < 0.05 balance test was roughly 15%. A closer look

at equation (6) explains why. The di↵erence between �̂ and �̂0 is roughly proportional to

the empirical covariance between the treatment and the covariate. Therefore, the Z-score

of the covariate in the cases where significance was boosted across a threshold should be

size-biased samples of the unit normal. The two-sided 1.96-tail for a size-biased standard

normal is 2

Z 1

1.96

|x|
2
e
�x2/2

dx ⇡ 0.146.

To summarize the results of this section, it is almost always possible to obtain a false

positive by adding covariates indiscriminately, requiring a pool of only a few dozen. If

one limits the cheating to adding a single covariate, the Type-I error, nominally set at 5%,

jumps to between 6% (N = 400) and 8.5% (N = 50). Among those cases where the original

data has a significance level between 0.05% and 0.10%, a single covariate boosts the p-value

across the p < 0.05 threshold between 20% and 50% of the time, over the same range of

N . Failing a balance test triples the chance that a covariate will accomplish this. Finally,

one should keep in mind that this analysis underestimates the ease of cheating, as it fails to

take into account any tweaking of the analysis other than inclusion or exclusion of available

covariates. Many other practices are possible for post-hoc model selection, including cre-

ation of new variables, e.g., for curvilinear relationships, changing how a variable is binned,

post-stratification or other re-weighting, and so forth.

6 Conclusion

Our central conclusion is that there is no statistical basis for advocating the Balance Test &

Adjust procedure for analyzing randomized experiments. Although balance testing is widely

advocated and is believed to produce more credible estimates of experimental e↵ects, post-

hoc adjustments using covariates selected on the basis of failed balance tests have no basis

in statistical theory. Covariates that are chosen after an experiment is conducted should
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produce greater rather than lesser skepticism about the results. In an era of grave concerns

surrounding the validity and impartiality of experimental findings, it is of particular concern

when researchers include covariates for reasons other than their pre-established capacity to

predict the dependent variable. Furthermore, tables of baseline demographics by condition,

whether or not accompanied by statistical testing, lead to subjective interpretations outside

of any statistical model.

As demonstrated in this article, including covariates in clean experiments for reasons

other than e�ciency opens the floodgates to coaxing weak coe�cients across the critical

p-value threshold. The availability of large numbers of covariates makes it relatively easy to

adjust findings through the use of one or more covariates. We do not mean to suggest that

most researchers who engage in the practices criticized here are actively trying to cheat.

However, given the rising concern about whether individual findings are replicable, the risks

of including variables without justification, and the lack of statistical basis for advocating

BT&A, we advocate eliminating this common practice.
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