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Time-Evolving Dynamics in Brain Networks Forecast Responses to
Health Messaging

Abstract
Neuroimaging measures have been used to forecast complex behaviors, including how individuals change
decisions about their health in response to persuasive communications, but have rarely incorporated metrics
of brain network dynamics. How do functional dynamics within and between brain networks relate to the
processes of persuasion and behavior change? To address this question, we scanned forty-Cve adult smokers
using functional magnetic resonance imaging while they viewed antismoking images. Participants reported
their smoking behavior and intentions to quit smoking before the scan and one month later. We focused on
regions within four atlas-deCned networks and examined whether they formed consistent network
communities during this task (measured as allegiance). Smokers who showed reduced allegiance among
regions within the default mode and frontoparietal networks also demonstrated larger increases in their
intentions to quit smoking one month later. We further examined dynamics of the VMPFC, as activation in
this region has been frequently related to behavior change. Be degree to which VMPFC changed its
community assignment over time (measured as Dexibility) was positively associated with smoking reduction.
Bese data highlight the value in considering brain network dynamics for understanding message eAectiveness
and social processes more broadly.
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Abstract  

Neuroimaging measures have been used to forecast complex behaviors, including how 

individuals change decisions about their health in response to persuasive communications, but 

have rarely incorporated metrics of brain network dynamics. How do functional dynamics within 

and between brain networks relate to the processes of persuasion and behavior change? To 

address this question, we scanned forty-five adult smokers using functional magnetic resonance 

imaging while they viewed antismoking images. Participants reported their smoking behavior 

and intentions to quit smoking before the scan and one month later. We focused on regions 

within four atlas-defined networks and examined whether they formed consistent network 

communities during this task (measured as allegiance). Smokers who showed reduced allegiance 

among regions within the default mode and frontoparietal networks also demonstrated larger 

increases in their intentions to quit smoking one month later. We further examined dynamics of 

the VMPFC, as activation in this region has been frequently related to behavior change. The 

degree to which VMPFC changed its community assignment over time (measured as flexibility) 

was positively associated with smoking reduction. These data highlight the value in considering 

brain network dynamics for understanding message effectiveness and social processes more 

broadly. 

 

 

Author contributions: All authors formulated the investigation; NC & JOG performed the 

analysis; NC, JOG, EBF, JV wrote the paper; ST & MBOD collected the data, provided analysis 

tools; all authors provided critical review and edited the manuscript. 
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Introduction 

 

Neural measures have forecasted future changes in behavior across a number of domains 

(Berkman and Falk 2013; Gabrieli, Ghosh, and Whitfield-Gabrieli 2015). This has included 

clinical treatment outcomes and health (Feldstein Ewing et al. 2017; Costafreda et al. 2009; 

Doehrmann et al. 2013; Yang et al. 2016; Lopez et al. 2017; Wilcox et al. 2017) as well as 

changes in individuals’ health behaviors in response to persuasive messaging. Neural activity 

during health messaging has been associated with reductions in smoking (Falk et al. 2011; 

Riddle et al. 2016; Chua et al. 2011; Zelle et al. 2017; Cooper et al. 2015, 2018; Pegors et al., 

2017), decreases in sedentary behavior (Cooper, Bassett, and Falk 2017; Falk et al. 2015), and 

increased sunscreen use (Falk et al. 2010; Vezich et al. 2016). These studies have largely related 

future health behaviors to neural activity in a small number of brain regions. However, these 

individual regions are also actively communicating with one another by forming dynamic 

networks to integrate activity across disparate brain regions (Bressler and Menon 2010; Sporns, 

Tononi, and Edelman 2000; Sporns et al. 2004). Consequently, a host of recent research has 

developed new approaches to studying global patterns in large-scale brain networks and has 

demonstrated that analyses of networks can provide new insight into brain function and behavior 

(Bullmore and Sporns 2009; Friston 2009; Menon 2011; Medaglia, Lynall, and Bassett 2015).  

We examined dynamic functional connectivity among network communities while a 

group of smokers were exposed to antismoking health messaging, and we hypothesized that 

individual differences in network interactions during messaging would precede subsequent 

changes in intentions to quit smoking and actual smoking behavior. We focused on four a priori 

networks which were defined based on resting-state data (Power et al. 2011). Large-scale brain 

networks can be identified through the analysis of correlated neural activity during rest or during 

https://paperpile.com/c/Ud3HCe/eTuRY+UzC48
https://paperpile.com/c/Ud3HCe/4gXI5+AfVTG+t0nxV+ax8jT+PSMiN+IyWHR
https://paperpile.com/c/Ud3HCe/4gXI5+AfVTG+t0nxV+ax8jT+PSMiN+IyWHR
https://paperpile.com/c/Ud3HCe/xJFCj+gdKzc+hwgRL+kjZY5+CpaZs+PQlZ4
https://paperpile.com/c/Ud3HCe/xJFCj+gdKzc+hwgRL+kjZY5+CpaZs+PQlZ4
https://paperpile.com/c/Ud3HCe/xJFCj+gdKzc+hwgRL+kjZY5+CpaZs+PQlZ4
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj
https://paperpile.com/c/Ud3HCe/87qpx+xw3ac
https://paperpile.com/c/Ud3HCe/3QETL+3l2Fo+wnhO9
https://paperpile.com/c/Ud3HCe/3QETL+3l2Fo+wnhO9
https://paperpile.com/c/Ud3HCe/gIOei+kqbK1+H5gM+tL9A4
https://paperpile.com/c/Ud3HCe/2WoT
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relevant cognitive tasks (Bressler & Menon, 2010; Friston, 1994; Raichle et al., 2001). Regional 

interactions when the brain is at rest capture its intrinsic architecture (Fox & Raichle, 2007; 

Greicius, Krasnow, Reiss, & Menon, 2003), and as such, the resulting network communities are 

thought to impose strong constraints on information processing in the brain (Fox et al., 2005; 

Power et al., 2011; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012). Network 

communities identified at rest are relevant for behavior and performance and can be mapped on 

to broad categories of cognitive processes (Smith et al., 2009); for example, dynamic changes in 

interactions among these network communities can account for performance variability (Bassett, 

Yang, Wymbs, & Grafton, 2015; Braun et al., 2015; Deng, Chandrasekaran, Wang, & Wong, 

2016; Gerraty et al., 2018; Liang, Zou, He, & Yang, 2016; Wang, Ong, Patanaik, Zhou, & Chee, 

2016). Thus, we argue that networks defined during the resting state identify fundamentally 

related systems of regions, which are functionally relevant and predictive of task performance. 

We examine dynamics in these networks during task performance to demonstrate a link between 

individual differences in health message processing and later smoking-related outcomes. 

More specifically, we focused on four a priori networks of interest whose regions have 

been associated with processes relevant for behavior change in previous research: the default 

mode, fronto-parietal control, salience, and subcortical networks (Kaye, White, and Lewis 2017; 

Falk and Scholz 2017). The default mode network is thought to form a system for self-related 

cognitive processing, including social processing, memory, and prospection (Bressler and Menon 

2010; Laird et al. 2011; Buckner et al. 2009). The salience network is critical for selecting and 

responding to behaviorally relevant stimuli (Seeley et al. 2007; Menon 2011; Barrett and Satpute 

2013). A growing body of previous work relating health-related outcomes to brain activity has 

implicated individual brain regions that are part of the default mode and salience networks 

https://paperpile.com/c/gdOOIA/ibpr+s2q4+Q4UL
https://paperpile.com/c/gdOOIA/yKzm+CfRa
https://paperpile.com/c/gdOOIA/yKzm+CfRa
https://paperpile.com/c/gdOOIA/EiOT+THGL+QWNQ
https://paperpile.com/c/gdOOIA/EiOT+THGL+QWNQ
https://paperpile.com/c/gdOOIA/SvVD
https://paperpile.com/c/gdOOIA/1w5g+nnua+sij1+o51J+w8K4+kzfw+JHso
https://paperpile.com/c/gdOOIA/1w5g+nnua+sij1+o51J+w8K4+kzfw+JHso
https://paperpile.com/c/gdOOIA/1w5g+nnua+sij1+o51J+w8K4+kzfw+JHso
https://paperpile.com/c/gdOOIA/1w5g+nnua+sij1+o51J+w8K4+kzfw+JHso
https://paperpile.com/c/gdOOIA/1w5g+nnua+sij1+o51J+w8K4+kzfw+JHso
https://paperpile.com/c/Ud3HCe/CGzJ8+uUobr
https://paperpile.com/c/Ud3HCe/CGzJ8+uUobr
https://paperpile.com/c/Ud3HCe/3QETL+xWozi+90aWh
https://paperpile.com/c/Ud3HCe/3QETL+xWozi+90aWh
https://paperpile.com/c/Ud3HCe/8rmDQ+H5gM+x2bET
https://paperpile.com/c/Ud3HCe/8rmDQ+H5gM+x2bET
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(Cooper, Bassett, and Falk 2017; Falk et al. 2015; Wang et al. 2013; Riddle et al. 2016; Zelle et 

al. 2017; Ramsay et al. 2013; Dinh-Williams et al. 2014; Vezich et al. 2016; Chua et al. 2011; 

Weber et al. 2015); future behavior has also been related to task activation in the striatum (Berns 

and Moore 2012; Genevsky and Knutson 2015-9; Venkatraman et al. 2015; Kühn, Strelow, and 

Gallinat 2016). Finally, changes in the fronto-parietal control network, thought to support task-

switching, have been linked to learning and decision-making (Braun et al. 2015; Bassett et al. 

2011; Gerraty et al. 2018), processes which are likely to be relevant to belief updating when 

receiving new information. Based on the critical role of these cognitive systems in support of 

behavior change, we hypothesized that better understanding the interactions among the regions 

in these a priori, atlas-defined networks would uncover an important and yet unstudied 

component of brain dynamics that can forecast critical health outcomes, changes in intentions to 

perform a behavior and actual changes in that behavior. We note that individual differences in 

network dynamics during the task could be due to a trait-like intrinsic difference in network 

dynamics, or context-dependent differences in how individual smokers process these the 

experience of a smoker viewing antismoking messages (which may stem in part from properties 

of the messages themselves); effects observed here could be due to one or a combination of these 

possibilities.  

Previous research has found that although mean activation in ventromedial prefrontal 

cortex (VMPFC) is associated with subsequent behavior change, this same brain activity is often 

uncorrelated with participants’ self-reported intentions (Cooper et al. 2015; Falk et al. 2010, 

2011). Several theories of health behavior posit that intentions to perform a behavior are an 

important precursor to behavior change, but that other factors also influence whether behavior 

change occurs (Ajzen, 1985, 1991; Armitage & Conner, 2001; Fishbein, 1979; Fishbein & 

https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+4TUPm
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+4TUPm
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+4TUPm
https://paperpile.com/c/Ud3HCe/eeUZK+irJoT+kWb3l+YEwRM
https://paperpile.com/c/Ud3HCe/eeUZK+irJoT+kWb3l+YEwRM
https://paperpile.com/c/Ud3HCe/eeUZK+irJoT+kWb3l+YEwRM
https://paperpile.com/c/Ud3HCe/JPjK+tZKJx+XJO9
https://paperpile.com/c/Ud3HCe/JPjK+tZKJx+XJO9
https://paperpile.com/c/Ud3HCe/PQlZ4+87qpx+gdKzc
https://paperpile.com/c/Ud3HCe/PQlZ4+87qpx+gdKzc
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Ajzen, 2011; Webb & Sheeran, 2006). In short, although related, intentions to change and 

actually changing behavior may be associated with partially differing neural precursors. To 

further explore this possibility, we compare both outcomes (changes in intentions and behavior) 

to network dynamics.  

Although previous research has identified the regions in the default mode, fronto-parietal 

control, salience, and subcortical networks as key components of successful behavior change, 

little work has examined how they work in concert. To assess the variable interactions between 

brain regions in these networks, we utilized two complementary metrics recently developed in 

network science to quantify regional dynamics, allegiance and flexibility. We first tested whether 

sustained coordinated processing within regions in the default mode, fronto-parietal, salience, 

and subcortical networks results in lasting changes in message-consistent outcomes. The extent 

to which regions form a cohesive community and demonstrate the same pattern of activity across 

time can be quantified by allegiance, where higher allegiance in a network would indicate more 

sustained coordination of activity and processing within regions in that subnetwork and 

decreased allegiance would indicate greater diversity in processing across nodes. We thus 

compare individuals’ changes in smoking-relevant outcomes to the allegiance in four key brain 

networks during messaging.  

We further examined the VMPFC specifically, which is the region most consistently 

associated with future behavior change in previous work (Falk and Scholz 2017; Cooper et al. 

2015; Falk et al. 2015; Chua et al. 2011; Vezich et al. 2016; Riddle et al. 2016; Falk et al. 2010). 

Given VMPFC’s role in integrating multiple sources of information to compute a value signal 

(Bartra, McGuire, and Kable 2013), we propose that successful change in behavior requires 

dynamic connections between the VMPFC and other relevant cognitive systems, which will be 

https://paperpile.com/c/Ud3HCe/uUobr+PQlZ4+xJFCj+kjZY5+xw3ac+hwgRL+87qpx
https://paperpile.com/c/Ud3HCe/uUobr+PQlZ4+xJFCj+kjZY5+xw3ac+hwgRL+87qpx
https://paperpile.com/c/Ud3HCe/6apIg


 

7 

indexed by increased VMPFC flexibility. This measure focuses on the activity of single brain 

regions, revealing whether a region remains a member of the same community over time or if it 

frequently (and flexibly) changes its assignment across communities between time points. Thus, 

we test the importance of both consistent interactions among regions and dynamic changes 

between networks during messaging about smoking cessation.  

 

  

 Methods 

Participants. The study sample consisted of 45 participants (28 male; mean age = 32 

years, SD=13; 30 white). All participants gave written informed consent in accordance with the 

procedures of the Institutional Review Board at the University of Michigan. Of the original fifty 

participants, two participants were excluded for missing data (one due to an error at the scanner, 

and another for not participating in the final session). Three participants were excluded for data 

quality issues (one for neurological abnormalities, one for excessive head motion, and a third for 

both vision problems and excessive head motion).  

 Participants were recruited from the general population using Craigslist and a university 

website. Initial eligibility was assessed through a phone call. To be eligible, potential participants 

must have been between the ages of 18 and 65, have smoked at least 5 cigarettes per day for the 

past month, and have been a smoker for at least 12 months. In addition, participants had to meet 

standard fMRI eligibility criteria, including having no metal in their body, no history of 

psychiatric or neurological disorders, and currently not taking any psychiatric or illicit drugs. 

Study timeline and measures. Following a screening for eligibility via telephone, 

participants completed three study sessions. The first session (Session 1) provided baseline 

measures of self-reported smoking behavior and intentions to quit or reduce smoking, which 
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were reported again at each following session. The fMRI scan (Session 2) took place an average 

of 6 days later. The follow-up session (Session 3) was conducted via telephone, an average of 39 

days after Session 2.  

Smoking outcomes. We assessed two smoking outcomes and their relation to neural 

dynamics. We first examined changes in intentions to quit smoking. At each of the three 

sessions, participants were asked 3 questions about their intentions to quit, reduce, or refrain 

from smoking in the next 3 months. The intention ratings were made on a 4-point scale (anchors: 

1 = definitely will not, 2 = probably will not, 3 = probably will, 4 = definitely will). Responses 

to these questions were averaged for each timepoint. Intention change for each individual was 

measured as the difference between the average of all intention questions at Session 1 and the 

average at Session 3. Intentions were also measured immediately after the scan (Session 2), but 

intention change from Session 1 to Session 2 was not associated with network measures or 

behavior change. 

We also examined changes in self-reported smoking behavior. Participants were asked to 

report the number of cigarettes they smoked per day at each of the three study sessions. As a 

reference, they were told that a pack contains 20 cigarettes. We related neural dynamics to the 

percent change in cigarettes smoked per day from Session 1 to Session 3 in each individual. We 

started with self-reports at Session 1 to match the timepoint of the intention measure; the reports 

of daily smoking at Session 1 and Session 2 were very consistent (r = 0.94). Self-report measures 

are commonly used to track smoking behavior change (Chua et al. 2011; Jasinska et al. 2012), 

and have been shown to have a moderate to high correlation with physiological metrics such as 

expired CO (Falk et al. 2011; Jarvis et al. 1987; Middleton and Morice 2000) and saliva and 

https://paperpile.com/c/Ud3HCe/kjZY5+k8qxD
https://paperpile.com/c/Ud3HCe/gdKzc+1KHs4+3cC6m
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serum cotinine (Etter, Vu Duc, and Perneger 2000; Patrick et al. 1994; Pokorski, Chen, and 

Bertholf 1994; Vartiainen et al. 2002).  

fMRI task. Participants completed 4 tasks in the scanner, but this analysis focused on the 

main task of interest, a persuasive messaging task that promoted smoking cessation. Participants 

saw 80 images with the tagline, “Stop Smoking. Start Living.” Each trial consisted of 4s of 

image presentation, followed by a 3s response screen with the statement “This makes me want to 

quit” and a 5-point rating scale (1=definitely does not, 5=definitely does); see Figure 1. The 

response period was followed by a jittered inter-trial interval, consisting of a screen with only a 

fixation cross (3-7.5s, mean = 4.10s, median = 3.32s, SD = 1.01s). 

Participants viewed 30 negative anti-smoking images, based on the FDA’s proposed 

graphic warning labels. Of these, 12 portrayed social consequences of smoking (e.g., exclusion 

from a group) and 18 portrayed non-social and health-related consequences of smoking (e.g., a 

tracheotomy). Additionally, participants viewed 30 neutral control images (11 social, 19 

nonsocial). The negative and neutral images were qualitatively matched in pairs, by overall 

composition of the content (e.g., xray image of a diseased lung and xray image of a healthy 

lung), focal point, and number of people in the image. The remaining 20 face images were a 

between-subject manipulation of personalization, where one set of participants saw images of 

their Facebook friends (N=19 participants) and the other (N=26 participants) saw unknown faces 

from a public database known as NimStim (Tottenham et al. 2009). We controlled for this 

between-subject manipulation in the regression analyses below, confirming that it was not 

significantly related to outcomes of interest. Each image was presented once, and the order of 

image presentation was randomized across individuals.  

 

https://paperpile.com/c/Ud3HCe/R9Mai+6CyWu+FSf3T+rBcmS
https://paperpile.com/c/Ud3HCe/R9Mai+6CyWu+FSf3T+rBcmS
https://paperpile.com/c/Ud3HCe/JpMLQ
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Fig 1. Task design. While undergoing fMRI, participants viewed images paired with the tagline 

“Stop Smoking. Start Living.”  

 

 

MRI data acquisition. Neuroimaging data were acquired using a 3 Tesla GE Signa 

MRI scanner. Two functional runs of one task (454 volumes total) are analyzed here. Functional 

images were recorded using a reverse spiral sequence (TR = 2000 ms, TE = 30 ms, flip angle = 

90°, 43 axial slices, FOV = 220 mm, slice thickness = 3mm; voxel size = 3.44 x 3.44 x 3.0 mm). 

We also acquired in-plane T1-weighted images (43 slices; slice thickness = 3 mm; voxel size = 

.86 x .86 x 3.0mm) and high-resolution T1-weighted images (SPGR; 124 slices; slice thickness = 

1.02 x 1.02 x 1.2 mm) for use in coregistration and normalization. 

fMRI pre-processing. Functional data were pre-processed and analyzed using Statistical 

Parametric Mapping (SPM8, Wellcome Department of Cognitive Neurology, Institute of 

Neurology, London, UK). To allow for the stabilization of the BOLD signal, the first five 

volumes (10s) of each run were not recorded by the scanner. Functional images were despiked 

using the 3dDespike program (AFNI; (Cox 1996)). Next, data were corrected for differences in 

the time of slice acquisition using sinc interpolation, where the first slice served as the reference 

slice. 

Data were then spatially realigned to the first functional image. We then co-registered the 

functional and structural images using a two-stage procedure. First, in-plane T1 images were 

https://paperpile.com/c/Ud3HCe/Bc6xl
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registered to the mean functional image. Next, high-resolution T1 images were registered to the 

in-plane T1 image. After coregistration, high-resolution structural images were segmented to 

produce a grey matter mask, and then normalized to the skull-stripped MNI template provided by 

FSL. Finally, functional images were smoothed using a Gaussian kernel (8 mm FWHM). 

Based on preliminary recent evidence suggesting the possible sensitivity of network 

results to spatial smoothing (Alakörkkö et al. 2017; Chen and Calhoun 2018), we conducted 

comparative analyses with unsmoothed data and confirmed that both the regional timecourse 

dynamics and a region’s temporally-evolving community affiliation were highly similar across 

smoothed and unsmoothed data in this study. We repeated the main analyses below with 

unsmoothed data, and present these results in the Supplemental Materials.  

Functional connectivity analysis. Following preprocessing, the mean signal was 

extracted from 264 atlas-defined regions of interest (ROIs) using the MarsBar package for SPM. 

These ROIs were spherical regions with an 8mm radius, centered on the 264 coordinates defined 

by (Power et al. 2011). The detrended timecourses from these regions were divided into 22 non-

overlapping bins of 20 TRs (where 20 TRs = 40 seconds); this bin size was chosen to optimize 

the detection of individual differences in dynamics during the task (Telesford et al., 2016). Given 

the short event-related design of this task, and relatively small number of images in each task 

condition, we did not compare dynamics of connectivity across the task separately by task 

condition. Wavelet coherence was estimated in each bin for each pair of regions, and was 

averaged across frequency bands between 0.06Hz and 0.12Hz, a task-relevant frequency range of 

coherence (Sun, Miller, and D’Esposito 2004). This resulted, for each bin, in a 264 x 264 matrix 

of coherence values for each pair of regions (Figure 2B). These 264 regions are identified by 

Power et al (2011) as composing 13 networks, depicted in Figure 2A. Based on previous 

https://paperpile.com/c/Ud3HCe/buS9a+ss6Le
https://paperpile.com/c/Ud3HCe/2WoT
https://paperpile.com/c/Ud3HCe/FWtHX
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research, our analysis focused on four networks from the Power atlas: default mode, fronto-

parietal, salience, and subcortical networks. These networks have been associated with 

processing indicative of persuasion and successful behavior change (Cooper, Bassett, and Falk 

2017; Falk et al. 2015; Wang et al. 2013; Riddle et al. 2016; Zelle et al. 2017; Ramsay et al. 

2013; Dinh-Williams et al. 2014; Vezich et al. 2016; Chua et al. 2011; Bassett et al. 2011; Braun 

et al. 2015; Gerraty et al. 2018; Weber et al. 2015). 

Community detection and network metrics. We employed recent advancements from 

network science to examine whether the synchrony within a network community (allegiance 

among the brain regions in the same community) or interactions between network communities 

(flexibility of brain regions to coordinate across communities) accounted for lasting changes in 

smoking outcomes. To capture changes in network communities over the course of the task, we 

utilized a multilayer community detection analysis (Bassett et al. 2011; Mucha et al. 2010). This 

allows for the investigation of changes in network structure over time by coupling nodes between 

adjacent time slices, and results in a community partition for each time window (Figure 2C). The 

algorithm utilized a generalized Louvain algorithm to optimize modularity (Bassett, Porter, et al. 

2013; Telesford et al. 2016). We repeated this optimization 100 times, since the algorithm is non-

deterministic and susceptible to near degeneracies (Good, de Montjoye, and Clauset 2010), and 

we averaged the iterations to compute the community metrics.  

The resulting community structures were used to estimate flexibility and allegiance 

(Ashourvan et al. 2017). Allegiance is defined as the proportion of time windows during which 

each pair of nodes were assigned to the same community. Flexibility is defined as the proportion 

of time windows during which each node changes community assignment. As shown in Figure 

2D, the central region shows high flexibility as it changes assignment from the yellow 

https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+tZKJx+JPjK+XJO9+4TUPm
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+tZKJx+JPjK+XJO9+4TUPm
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+tZKJx+JPjK+XJO9+4TUPm
https://paperpile.com/c/Ud3HCe/ZB6lo+xJFCj+GNkCx+hwgRL+CpaZs+4LalK+NNiYp+xw3ac+kjZY5+tZKJx+JPjK+XJO9+4TUPm
https://paperpile.com/c/Ud3HCe/tZKJx+PgzxF
https://paperpile.com/c/Ud3HCe/iyx31+asEzE
https://paperpile.com/c/Ud3HCe/iyx31+asEzE
https://paperpile.com/c/Ud3HCe/YrHj2
https://paperpile.com/c/Ud3HCe/ciGM1
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community to the red community at time 1 and the blue community at time 2. In contrast, 

allegiance identifies regions that are strongly connected over time, as demonstrated by the yellow 

community in Figure 2D. We employed these two metrics to examine the relationship between 

brain activity and health outcomes. 

 

Fig 2. Analysis design. Overview of analysis scheme. We extracted the time series of 

activation in all nodes of the Power atlas brain parcellation during the task (panel A). Using 

wavelet coherence as a measure of functional connectivity (B) and input to a dynamic 

community detection algorithm (C), we explored community affiliations across the timecourse of 

the task using two metrics, flexibility and allegiance, which are explained in a hypothetical 

network (D). From an initial network configuration at time 0, regions reconfigure over time. In 

the top row, a node changes its affiliation from the yellow community at time 0 to the red 

community at time 1, then to the blue community at time 2, indicating increased flexibility 

relative to nodes remaining in the same community at all timepoints. In the bottom row, the 

yellow community gains more nodes and more connections between nodes across time, 

indicating increased allegiance.  
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Relating network allegiance metrics and smoking-related outcomes. In our first set of 

analyses, we examined the relationship between network allegiance measures and changes in 

smoking-related outcomes. We tested these relationships in the 4 atlas-defined networks of 

interest (default mode, frontoparietal, salience, and subcortical networks). For analyses in the a 
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priori networks, allegiance of all node pairs was averaged to obtain a composite measure of 

allegiance within the atlas-defined network. In separate models for each a priori network, we 

used robust regression to predict changes in smoking intentions and percent changes in daily 

smoking. We examined average allegiance both as a linear metric and binned into quartiles to 

identify robust trends in the community dynamics (Lange, Oostenveld, and Fries 2013; van Dijk 

et al. 2008), where quartile labels were entered as a categorical variable in the robust regression 

model.  

We used the robust regression (RLM) function in R’s (version 3.2.4) MASS library. The 

Wald test was used to assess significance of RLM coefficients (robtest, R’s sfsmisc package). All 

models controlled for personalization condition (Facebook vs NimStim faces), gender, age, and 

ethnicity (white versus other); models predicting intention change also controlled for Session 1 

(baseline) intentions. Robust linear models are less sensitive to outliers and high leverage data 

points, allowing the inclusion of all data points. Personalization condition, a between-participants 

variable, did not significantly relate to the main outcomes discussed in this investigation (metrics 

of network allegiance and flexibility or smoking-related outcomes).  

Relating network flexibility metrics and smoking-related outcomes. In our final 

analysis, we examined the relationship between VMPFC flexibility and changes in smoking-

related outcomes. We examined VMPFC flexibility both binned into quartiles to test categorical 

differences (categorical predictor in regression) and as a linear metric. We used robust regression 

to relate VMPFC flexibility to changes in smoking intentions and percent changes in daily 

smoking. As above, these models controlled for task condition (Facebook vs NimStim faces), 

gender, age, and ethnicity (white versus other); models predicting intention change also 

controlled for Session 1 (baseline) intentions.  

https://paperpile.com/c/Ud3HCe/1EtmN+ERUhv
https://paperpile.com/c/Ud3HCe/1EtmN+ERUhv
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Results 

 In this study, we examine how the dynamics of brain networks during exposure to 

antismoking messaging relate to smoking-related outcomes in the following month. We 

hypothesized that individual differences in metrics of brain network dynamics during a 

behaviorally-relevant task, rating antismoking messages, would precede changes in smoking-

related intentions and behavior. Smokers participated in an fMRI scanning session, during which 

they viewed antismoking messages. Before the fMRI scan and one month later, participants self-

reported their intentions to quit smoking and the number of cigarettes they smoked per day. We 

first examined brain network dynamics during exposure to antismoking messaging in nodes 

belonging to four a priori networks based on the Power et al. (2011) atlas: the default mode 

network (DMN), frontoparietal network (FPN), salience network, and subcortical network; 

activation in regions that comprise these networks has been previously linked to persuasion and 

health behavior change, but their community dynamics have not been investigated. We assessed 

the functional connectivity between all pairs of regions in 22 consecutive time windows across 

the course of the task. We then used a dynamic community detection algorithm to study the 

relationship between brain network dynamics and smoking-related outcomes in two 

complementary analyses: the first investigated allegiance in our a priori networks of interest, and 

the second studied flexibility in the VMPFC based on its consistent association with future 

behavior change in previous work.  

 Changes in smoking intentions and behavior. Average intentions to reduce or quit 

smoking significantly increased from the intake session to the follow-up session (paired t(44) = 

4.59, p < 3.6 x 10-5). At Session 1, intentions to quit averaged 2.41 (SD = 0.81); at Session 3, 

intentions to quit averaged 2.97 (SD = 0.76). We also examined a second smoking outcome, 
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changes in smoking behavior. At Session 1, participants reported smoking an average of 13.3 

(SD = 6.5) cigarettes per day. At Session 3, which took place an average of 45 days later, 

participants smoked an average of 10.2 (SD = 7.7) cigarettes per day. This represented a 

significant decline in the number of cigarettes participants smoked per day from the intake to 

follow-up session (paired t(44) = 3.22, p <0.0024). In the following sections, we examine the 

relationships between changes in smoking intentions and behavior, and dynamics in neural 

network measures during exposure to antismoking messaging. 

 Allegiance in subnetworks relates to changes in intentions. We first tested whether 

individual differences in allegiance between nodes within the atlas-defined DMN, a network 

associated with social processing, self-relevance, valuation, memory, and prospection, were 

related to message-consistent outcomes after the scanning session. We averaged allegiance 

between all node pairs in the atlas-defined DMN (Fig 3A) and divided individuals into quartiles 

based on this distribution (Fig 3B). We then related allegiance in these quartiles to changes in 

participants’ intentions to quit smoking. A histogram of intention change can be found in Fig 3C. 

We found that reduced allegiance between nodes within the DMN predicted a greater increase in 

intentions to quit smoking (quartile robust regression, t(38)=-2.86, p<0.007; continuous variable 

robust regression t(38)=-1.99, p<0.049; see Fig 3D and Fig S1), controlling for intentions at 

baseline and demographic covariates. In a parallel analysis, we examined the relationship 

between allegiance in the atlas-defined DMN and behavior change. In our main analysis, DMN 

allegiance was not significantly related to reductions in daily smoking (continuous robust 

regression t(39)=1.41, p<0.167), but these results became significant when examining 

unsmoothed data (see Supplemental Materials).  
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Fig 3. Reduced allegiance within the default mode network precedes increased intention 

change. (A) Nodes in the atlas-defined default mode network (DMN). (B) Histogram of 

allegiance between pairs of nodes in the atlas-defined DMN, averaged within individuals. These 

averages are divided into quartiles, with bin borders noted as vertical dotted lines. (C) Histogram 

of changes in intentions from Session 1 to Session 3 for each individual, where positive value 

indicate an increased intention to change over time. (D) Relationship between allegiance of 

nodes within the atlas-defined DMN and intention change, where intention change was averaged 

in DMN allegiance quartiles. Error bars represent standard error of the mean. 

  

 

 

We repeated this analysis for the atlas-defined FPN, a network that has been associated 

with decision making and may play a critical role in belief updating. Following the same process 

as DMN, we averaged allegiance between nodes in the FPN (Fig 4A) and divided this 
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distribution into quartiles (Fig 4B). We then related allegiance in these quartiles to changes in 

participants’ intentions to quit smoking, and our primary results identified that reduced 

allegiance in the FPN was also related to increased intentions (quartile, t(38)=-2.37, p<0.021; 

continuous variable robust regression t(38)=-2.10, p<0.038; see Fig 4D and Fig S2). However, 

this relationship was trending in the same direction but not significant using unsmoothed data 

(see Supplemental Materials). Allegiance in the FPN was not related to reductions in daily 

smoking (continuous robust regression t(39)=1.19, p<0.238). 

We performed parallel analyses in the final two networks of interest, the salience and 

subcortical networks, for a total of 8 tests each of the relationship between network allegiance 

and intention change, and network allegiance and behavior change for each sub-network 

(including the supplemental analyses using unsmoothed data). We found no significant 

relationships between allegiance and intentions (salience: continuous robust regression, t(38)=-

0.27, p<0.78; subcortical: continuous robust regression, t(38)=-0.11, p<0.91) or reductions in 

daily smoking (salience: continuous robust regression, t(39)=1.14, p<0.265; subcortical: 

continuous robust regression, t(39)=1.74, p<0.097).  

 

Fig 4. Reduced allegiance within the frontoparietal network precedes increased intention 

change. (A) Nodes in the atlas-defined frontoparietal network (FPN). (B) Histogram of 

allegiance between pairs of nodes in the atlas-defined FPN, averaged within individuals. These 

averages are divided into quartiles, with bin borders noted as dotted vertical lines. (C) Histogram 

of changes in intentions from Session 1 to Session 3 for each individual. (D) Relationship 

between allegiance of nodes within the atlas-defined FPN and intention change, where intention 
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change was averaged within FPN allegiance quartiles. Error bars represent standard error of the 

mean. 

 

 

 

VMPFC flexibility relates to later changes in behavior. In our final analysis, given its 

particularly robust presence in the literature on behavior change, we examined whether VMPFC 

demonstrated coordinated, but flexible, dynamics across multiple network communities. The 

VMPFC has been posited to be a hub of information processing, integrating inputs about the self-

relevance and valuation of information and influencing decision-making, and localized activation 

in VMPFC has been frequently reported to predict behavior changes following persuasive 

messaging. To complement these previous activation findings and investigate the possible role of 

VMPFC in integrating information between multiple network communities, we selected the node 

in the Power parcellation that was closest to the center of mass of the VMPFC region identified 
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as predictive of behavior change in a sunscreen use study (Falk et al. 2010), shown in Fig 5A; 

this region has now been used to predict behavior change in several contexts (Falk et al. 2015; 

Cooper et al. 2015; Falk et al. 2011; Riddle et al. 2016). Of note, the same node is closest to the 

center of mass of the VMPFC region identified as responding to subjective value in a value-

based decision making meta-analysis by Bartra et al., 2013. This VMPFC node is classified as 

belonging to the default mode network; however, we examined VMPFC separately, as the 

default mode as defined in the Power atlas is a large network comprised of 45 nodes, and thus 

the behavior of the VMPFC node may not be representative of the entire network (e.g., in past 

research on behavior change, VMPFC is robustly associated with behavior change, but several 

regions of the default mode network are not). 

Our analysis evaluated the flexibility of VMPFC to quantify how often it changed 

community affiliations over time. We tested whether individuals who demonstrated differential 

levels of flexibility in the VMPFC region showed corresponding variation in their intentions to 

quit smoking or smoking behavior in the month following the scanning session (for a total of 4 

tests, including the supplemental analyses using unsmoothed data). VMPFC flexibility 

(displayed in Fig 5B) was not significantly related to changes in intentions using smoothed 

(continuous robust regression: t(38)=1.55, p<0.120) or unsmoothed data (Supplemental 

Materials). We next examined the relationship between VMPFC flexibility and behavior change 

(displayed in Fig 5C). VMPFC flexibility was significantly related to individual differences in 

smoking reductions one month after the scan, such that individuals with more flexible VMPFC 

network activity demonstrated larger reductions in their smoking behavior using smoothed 

(quartile robust regression, t(39) = -2.93, p <0.005; continuous measure robust regression, t(39) 

= -2.85, p <0.006) and unsmoothed data (Supplemental Materials); see Fig 5D and Fig S3. This 

https://paperpile.com/c/Ud3HCe/87qpx
https://paperpile.com/c/Ud3HCe/xJFCj+PQlZ4+gdKzc+hwgRL
https://paperpile.com/c/Ud3HCe/xJFCj+PQlZ4+gdKzc+hwgRL
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suggests that the network interactions of VMPFC also capture an important component of its role 

in forecasting health outcomes.  

 

Fig 5. VMPFC flexibility relates to behavior change. (A) Region of VMPFC identified by 

Falk et al 2010 (left) and the closest Power parcellation node (right). (B) Histogram of VMPFC 

flexibility in each individual, with the vertical dotted black line denoting the border for the 

quartile bins. (C) Histogram of the percent change in cigarettes smoked per day in each 

individual, where negative values indicate a reduction in cigarettes smoked per day. (D) 

Relationship between VMPFC flexibility and behavior change, where behavior change was 

averaged within VMPFC allegiance quartiles. Error bars represent standard error of the mean. 

 

 

Discussion 
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Previous research has identified the critical role of regions in several brain networks for 

persuasion and successful behavior change, but to date, research has not examined whether 

interactions among these networks can account for individual differences in smoking outcomes. 

Interactions between pairs of regions have been related to message effectiveness and behavior 

change (Dinh-Williams et al. 2014; Ramsay et al. 2013; Cooper, Bassett, and Falk 2017; Zelle et 

al. 2017; Cooper et al. 2018), and we extend this work by utilizing a large-scale network 

approach. We employed recent advancements from network science to examine whether the 

synchrony within a network community (allegiance among the brain regions in the community) 

or between network community interactions (flexibility of brain regions to coordinate across 

communities) accounted for lasting changes in smoking outcomes. We find that dynamics in two 

networks, the default mode and frontoparietal control networks, may be relevant to smoking-

related outcomes. We also find that more frequent network changes in a key node of the default 

mode network consistently linked to predictions of behavior change, the ventromedial prefrontal 

cortex, is associated with reductions in smoking behavior. 

Relationship between network allegiance and changes in smoking intentions. Larger 

increases in intentions to quit smoking were related to reduced allegiance between nodes 

belonging to the atlas-defined default mode and frontoparietal networks, particularly in analyses 

using smoothed data. In other words, there was lower consistent functional connectivity across 

the timecourse of the task within regions in each of these networks for those individuals who 

showed an increase in intentions to quit smoking. This reduction in network allegiance over the 

duration of the task may reflect differential recruitment of nodes in each of these networks to 

interactions with outside-network nodes, and it is plausible that this diversification of 

communication could support long-term intention change. A point of interest in future 

https://paperpile.com/c/Ud3HCe/NNiYp+4LalK+ZB6lo+CpaZs+VSHI
https://paperpile.com/c/Ud3HCe/NNiYp+4LalK+ZB6lo+CpaZs+VSHI
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investigations will be identifying inter-network interactions that precede intention change, and 

examining whether these interactions involve entire functional network communities or subsets 

of these atlas-defined networks.  

The finding of reduced allegiance within the atlas-defined frontoparietal and default 

mode networks may be related to the possible division of these networks into smaller modules 

dependent on context and task demands. If these a priori networks are fractionated into modules 

which are more strongly connected to other networks than to each other, this could result in 

reduced intra-network allegiance. Several studies identify meaningful subnetworks of both FPN 

and DMN; for example, Spreng et al (2013) and Dixon et al (2018) find separate types of nodes 

within the frontoparietal control network, based on their interactions with other networks 

(Spreng et al. 2013; Dixon et al. 2018). The DMN has also been shown to be separable into 

subnetworks based on task-related functional connectivity (Fornito et al. 2012; Dixon et al. 

2017), and both DMN flexibility (Vatansever et al. 2015; Stanley et al. 2014) and its connectivity 

with other networks (Finc et al. 2017) can change with task demands. 

 The frontoparietal network has been posited to change its connectivity patterns in 

response to changes in task demands to a greater extent than other functional networks (Cole et 

al. 2013), and such changes in frontoparietal network connectivity have been previously reported 

to correlate with greater changes in behavior. For example, reduced allegiance in hubs of the 

fronto-parietal network predicted individual differences in learning (Gerraty et al. 2018; Bassett 

et al. 2015), as well as better performance on working memory and executive cognition tasks 

(Braun et al. 2015). Although these previous findings relating FPN connectivity changes to 

behavior come from other task domains, it is possible that the core process - learning - is similar 

to what participants are experiencing during exposure to persuasive messaging; in particular, the 

https://paperpile.com/c/Ud3HCe/l7qyV+hiTbv
https://paperpile.com/c/Ud3HCe/OemUB+UOhRQ
https://paperpile.com/c/Ud3HCe/OemUB+UOhRQ
https://paperpile.com/c/Ud3HCe/H3okm+ltU2R
https://paperpile.com/c/Ud3HCe/jkcdu
https://paperpile.com/c/Ud3HCe/oExW4
https://paperpile.com/c/Ud3HCe/oExW4
https://paperpile.com/c/Ud3HCe/XJO9+qVxn
https://paperpile.com/c/Ud3HCe/XJO9+qVxn
https://paperpile.com/c/Ud3HCe/JPjK
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updating of beliefs during exposure to self-relevant information from the messages could be akin 

to learning. The results linking frontoparietal network to intention change, however, should be 

interpreted with caution, given that these results were less robust using unsmoothed data (see 

Supplemental Materials). 

 Relevance of VMPFC flexibility for smoking behavior. We also find evidence for the 

importance of VMPFC flexibility. Individuals who displayed higher VMPFC flexibility, or 

switching of community affiliations, across the duration of the task also reported larger 

reductions in their daily smoking levels one month later. Activation in VMPFC during exposure 

to messaging has been repeatedly linked to long-term behavior change (Chua et al. 2011; Wang 

et al. 2013; Falk et al. 2011; Cooper et al. 2015; Riddle et al. 2016; Vezich et al. 2016; Falk et al. 

2015), and it is possible that frequent community changes, corresponding to high flexibility, 

relate to the activation levels detected in prior work. The VMPFC has structural and functional 

connectivity with an array of regions in networks involving memory, affective regulation, and 

higher-order cognition (Roy, Shohamy, and Wager 2012; Amodio and Frith 2006; Buckner et al. 

2009; Tomasi and Volkow 2011; Price and Drevets 2012). Our result suggests that the time-

varying strength of these connections may influence long-term behavior. These results are also 

consistent with the possible broader relationship between reduced default mode allegiance and 

behavior change observed in our supplemental analyses using unsmoothed data; VMPFC is one 

key node in the default mode network, and greater flexibility in key nodes of the default mode 

network would correspondingly be related to lower allegiance. 

We also find that changes in smoking behavior and intentions are related to partially 

divergent metrics of neural dynamics. Several theories of health behavior posit that intentions to 

perform a behavior are an important precursor to behavior change, but that other factors also 

https://paperpile.com/c/Ud3HCe/kjZY5+GNkCx+gdKzc+PQlZ4+hwgRL+xw3ac+xJFCj
https://paperpile.com/c/Ud3HCe/kjZY5+GNkCx+gdKzc+PQlZ4+hwgRL+xw3ac+xJFCj
https://paperpile.com/c/Ud3HCe/kjZY5+GNkCx+gdKzc+PQlZ4+hwgRL+xw3ac+xJFCj
https://paperpile.com/c/Ud3HCe/ZQPmk+oreIJ+90aWh+nhK1H+Awk02
https://paperpile.com/c/Ud3HCe/ZQPmk+oreIJ+90aWh+nhK1H+Awk02
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influence whether behavior change occurs (Fishbein 1979; Fishbein and Ajzen 2011; Ajzen 

1985, 1991; Armitage and Conner 2001; Webb and Sheeran 2006). This partial dissociation 

between intentions and behavior seems to be reflected in the brain in this study, where we find 

that some neural metrics related to changes in intentions are not related to changes in behavior, 

and vice versa. The present findings complement and extend previous neuroimaging studies of 

behavior change in which intention changes do not mediate the relationship between VMPFC 

activation and behavior change (Cooper et al. 2015; Falk et al. 2010, 2011), and also suggest that 

other dynamics between other sub-portions of the default mode network may be worth exploring 

to bridge the neural underpinnings of intentions and behaviors. Together, these reports suggest 

that different neurocognitive processes during initial exposure may support the evaluation of 

intentions to perform a behavior, and the additional cognitions and actions that result in 

longitudinal behavior change. These results highlight promise in additional research to build a 

more a complete model of the relationship between immediate brain responses to persuasive 

messaging, and later outcomes such as self-reported intentions and behavior.  

Future directions and limitations. The underlying origin of individual differences in 

functional connectivity dynamics is an open question and intriguing avenue for future research. 

Here, we expect that some individuals are more susceptible to persuasion through health 

messaging than others, and that we can detect this propensity by assessing network dynamics 

during the task. Further, this could be due to differences in intrinsic dynamics of the networks of 

interest (i.e., a person-level factor), differences in the dynamics associated with processing the 

anti-smoking images (i.e., a message-level factor), or both (i.e., an interaction between the two).  

Although individual differences in networks may suggest that regional activity differences have a 

trait-like component, our inclination is to avoid a hard split between context-dependence and 

https://paperpile.com/c/Ud3HCe/mbOtE+kiUR5+6Ujya+2rR11+mAxmM+h5L01
https://paperpile.com/c/Ud3HCe/mbOtE+kiUR5+6Ujya+2rR11+mAxmM+h5L01
https://paperpile.com/c/Ud3HCe/PQlZ4+87qpx+gdKzc
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traits, and instead consider the importance of varying timescales when considering context vs 

trait effects. That is, individual differences may appear trait-like when brain activity is observed 

in a single session or narrow timeframe, but these between-subject differences may show more 

context-based effects when examined over longitudinal timescales and in response to different 

types of stimuli. We expect that network dynamics in the same individual might vary depending 

on the task presented (e.g., different message frames), although we do not directly investigate 

task conditions in this analysis; that is, we expect that network dynamics during this antismoking 

task may be related to changes in future smoking behavior, but not necessarily to other behavior 

domains, or even to different types of message approaches. Whether the effects we observe here 

are more strongly related to task-related processing or intrinsic dynamics could have differing 

implications for the design of more effective health messaging campaigns and broader questions 

about persuasion and influence, and hence provide valuable directions for future research; for 

example, the former would implicate the need for changes in the design of messages, and the 

latter might suggest participant-level interventions to improve receptivity to messaging (such as 

self-affirmation, as in Taber et al. 2016; Epton et al. 2015; McQueen and Klein 2006; Epton and 

Harris 2008).Thus, the extent to which network dynamics vary across different timescales and in 

response to different task domains is an important question for future work.  

The difference in functional dynamics between task conditions, such as the negative and 

neutral antismoking messages presented here, might also provide further insight into the 

mechanism of the effects we identify in this report. Specifically, this could aid in understanding 

what message characteristics are important for changes in brain response and later behavior, and 

whether the effects we report in the current manuscript stem from stable trait-like neural 

tendencies, context dependent shifts in brain dynamics, or an interaction between the two. 

https://paperpile.com/c/Ud3HCe/xHC8l+4diwY+oAlO9+2Gdag
https://paperpile.com/c/Ud3HCe/xHC8l+4diwY+oAlO9+2Gdag
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However, constraints of the task design in this experiment (namely, short stimulus presentation 

times and a relatively small number of stimuli presented to all participants) prevented the 

estimation of functional connectivity dynamics separately between task conditions. Future work 

incorporating slower and longer task designs will provide insightful extensions of our results, 

advancing our understanding about message characteristics important for behavior change. 

Conclusions. Here we investigated the relationship between the time-varying nature of 

brain activity during exposure to antismoking messages and future changes in smoking behavior 

and intentions to quit. We found robust evidence that reduced allegiance within the atlas-defined 

default mode network related to changes in intentions to quit smoking and that flexibility in the 

VMPFC related to changes in smoking behavior, and suggestive evidence that reduced 

allegiance in the frontoparietal network related to intention change. There is increasing 

recognition that consideration of brain networks and their dynamics, and not just activation in 

individual regions, is necessary for understanding human cognition and behavior; here, we show 

that metrics of functional dynamics can provide new information about individual differences in 

responsiveness to anti-smoking messaging. These results highlight the value in considering brain 

network dynamics for understanding message effectiveness and social processes more broadly.  
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SUPPLEMENTAL MATERIALS 

 

Supplemental analyses with unsmoothed fMRI data 

 

Based on the sensitivity of network results to spatial smoothing, we repeated the analyses 

in the main manuscript using unsmoothed fMRI data, and find that the majority of results are 

robust to this change. 

Allegiance in subnetworks relates to changes in intentions. Within the default mode 

network (DMN), allegiance was marginally related to intention change (continuous regression, 

t= -1.89, p<.058), such that greater intentions to change smoking behavior were related to lower 

DMN allegiance; using smoothed data, this relationship was statistically significant. DMN 

allegiance was also significantly related to behavior change (continuous regression, t=2.36, 

p<.023), such that larger reductions in daily smoking were related to lower DMN allegiance. 

Using smoothed data, this relationship was not significant.  

Within the frontoparietal network (FPN), allegiance was not significantly related to 

intention change (continuous regression, t=-1.32, p<.184); this relationship was significant with 
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smoothed data. Allegiance within the FPN was not significantly related to behavior change using 

unsmoothed data (continuous regression, t=1.09, p<.290) or smoothed data.  

Results within the salience and subcortical networks are not substantively different using 

unsmoothed vs smoothed data. Using unsmoothed data, within the salience network, allegiance 

was not significantly related to intention change (continuous regression, t=-0.59, p<.56) or to 

behavior change (continuous regression, t=1.19, p<.24). Within the subcortical network, 

allegiance was not significantly related to intention change (continuous regression, t=-0.40, 

p<.68) or to behavior change (continuous regression, t=1.91, p<.07).   

VMPFC flexibility relates to later changes in behavior. Parallel to findings with 

smoothed data, flexibility of the VMPFC using unsmoothed data was significantly related to 

behavior change (continuous regression, t= -2.61, p<.011) and not significantly related to 

intention change (continuous regression, t=1.56, p<.12).  

 

Supplemental figures 

 

As presented in the main text using smoothed data, we find that reduced allegiance 

between nodes within the DMN predicted a greater increase in intentions to quit smoking. Figure 

S1 presents a scatterplot of the relationship between each individual’s changes in intentions to 

quit smoking and allegiance in the DMN. DMN allegiance was adjusted for covariates in the 

continuous robust regression, namely Session 1 (baseline) intentions, personalization condition 

(Facebook vs Nimstim faces), gender, age, and ethnicity (white versus other). 

 

Figure S1 
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Reduced allegiance between nodes within the FPN also predicted a greater increase in 

intentions to quit smoking using smoothed data. Figure S2 presents a scatterplot of the 

relationship between each individual’s changes in intentions to quit smoking and allegiance in 

the FPN. FPN allegiance was adjusted for covariates in the continuous robust regression, namely 

Session 1 (baseline) intentions, personalization condition (Facebook vs NimStim faces), gender, 

age, and ethnicity (white versus other). 

 

Figure S2 
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Finally, VMPFC flexibility was significantly related to individual differences in smoking 

reductions one month after the scan, such that individuals with more flexible VMPFC network 

activity demonstrated larger reductions in their smoking behavior. Figure S3 presents a 

scatterplot of the relationship between each individual’s percent reduction in smoking and 

VMPFC flexibility using smoothed data. VMPFC flexibility has been adjusted for covariates in 

the continuous robust regression, namely personalization condition (Facebook vs NimStim 

faces), gender, age, and ethnicity (white versus other). 

 

Figure S3 
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