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How do we predict how an individual will behave in a particular situation? Across several 
decades, social scientists have identified many self-report measures that account for individual 
variability in behavior, yet a large percentage of the variance remains unaccounted for by these 
introspective reports (Armitage & Conner, 2001; O’Keefe, 2018). Recent advances in analytic 
approaches and computational tools have provided new, complementary avenues to investigate 
this difficult question. Non-invasive neuroimaging approaches (e.g., functional magnetic 
resonance imaging [fMRI], functional near infrared spectroscopy [fNIRS], and 
electroencephalography [EEG]) measure brain activity while participants view stimuli and make 
decisions, providing a powerful tool to capture objective measurements of individual differences 
during task performance (Berkman & Falk, 2013; Tompson, Lieberman, & Falk, 2015). Analytic 
tools for quantifying patterns of activation within and between brain regions further advance the 
power of neuroimaging approaches to predict how individuals will behave (Bassett & Sporns, 
2017; Kriegeskorte, 2011), as well as how they will interact with one another, and how groups of 
individuals will make decisions. In short, the foundation of social neuroscience posits that 
measuring brain activity provides access to psychological processes and neural circuitry that may 
serve as the underlying mechanisms that explain individual differences in behavior. 
In this review, we first discuss evidence that demonstrates the association between brain 
activation and individual decisions and behaviors. Studies within the domains of health and 
consumer behaviors have identified a consistent set of brain regions associated with individual 
decisions and behaviors. These brain regions have been implicated in processing information 
about the reward value of choice and behavioral options (valuation) as well as processing social 
information about the mental states of others (mentalizing). Second, we discuss evidence that 
these same brain regions are also linked to aggregate behavior for groups of individuals. Third, 
we discuss evidence that these brain regions are associated with how individuals will behave in 
social interactions. Finally, we discuss evidence that the association between brain activation and 
behavior is moderated by social factors including social network position, culture, and 
socioeconomic status. Throughout, we highlight recent advances that leverage multivariate and 
network analysis approaches that emphasize different components of brain activity patterns to 
understand the neural mechanisms underlying social behavior. 

THE BRAIN-AS-PREDICTOR APPROACH 

The human brain is a massively interconnected network consisting of 86 billion neurons with 
trillions of connections between neurons (Azevedo et al., 2009). Human cognition requires 
coordinated communication across macroscopic brain systems composed of both gray matter 
(cell bodies) and white matter (axons; Bassett & Sporns, 2017). The gray matter is typically 
divided into brain regions composed of large groups of adjacent neurons that have similar 
properties, and these regions demonstrate specialized information processing and knowledge 
representation. The white matter provides the structural connections between distant brain 
regions and is often described as the wiring in the brain (Vettel, Cooper, Garcia, Yeh, & 
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Verstynen, 2017). Together, brain networks support cognition and human behavior by 
communicating information among brain regions for integrated processing and rely on the 
structural connections to enable efficient and rapid responses across distant brain regions 
(Passingham, Stephan, & Kötter, 2002). Consequently, coordinated communication across the 
brain is fundamentally constrained by specialized processing in individual brain regions and 
patterns of interconnections reflected in functional connectivity of synchronized activity between 
regions. 
The brain-as-predictor approach measures brain activation while individuals evaluate 
information about various behavioral options, and then uses that activation to predict subsequent 
behavioral outcomes, often over the course of weeks, months, or even years (see Cascio, Scholz, 
& Falk, 2015; Falk & Scholz, 2018; Knutson & Genevsky, 2018 for a review). The majority of 
these studies use functional magnetic resonance imaging (fMRI) to measure brain activation, 
although other imaging modalities such as electroencephalography (EEG), functional near 
infrared spectroscopy (fNIRS), magnetoencephalography (MEG), or positive emission 
tomography (PET) could also be used. To date, the brain-as-predictor approach has been applied 
to predict both individual behaviors and aggregate group behaviors in diverse domains, including 
health (Cooper, Bassett, & Falk, 2017; Falk, O’Donnell, Tompson, et al., 2015), consumer 
(Genevsky, Yoon, & Knutson, 2017; Levy, Lazzaro, Rutledge, & Glimcher, 2011), and political 
behaviors (Rule et al., 2009). Importantly, in many of these studies, brain activation provides 
additional information about the likelihood of engaging in a particular behavioral outcome, 
beyond what is explained by self-reported intentions, preferences, and other questionnaire items 
(Falk, O’Donnell, Tompson, et al., 2015; Genevsky et al., 2017; Venkatraman et al., 2015). 
In addition to improving our ability to predict behavior, the brain-as-predictor approach can also 
yield important insights into the psychological processes underlying these behaviors. Studies 
using fMRI to predict behaviors frequently implicate three sets of brain regions that are broadly 
involved in processing self-relevance, social relevance, and overall value of incoming 
information (see Figure 1). In particular, vmPFC and PCC have been implicated in processing 
the relevance of information to the self (Denny, Kober, Wager, & Ochsner, 2012; Martinelli, 
Sperduti, & Piolino, 2013), such as whether a word or product describes the self or is part of the 
individual’s identity (Kelley et al., 2002; Kim & Johnson, 2012). The dmPFC and TPJ have been 
implicated in social processing, including considering the mental states of others (i.e., 
mentalizing; Denny et al., 2012; Saxe & Kanwisher, 2013). The vmPFC and VS have been 
implicated in integrating information from different sources to compute a signal of the subjective 
value of the information (Bartra, McGuire, & Kable, 2013). It should be noted that these 
processes often overlap and that several of the brain regions listed are implicated across these 
functions as well.  Indeed, researchers have argued that these brain regions work together to 
process information about the fit of the behavioral options to an individual’s values, beliefs, and 
goals as well as to broader social norms, which are then integrated into a single value signal 
indicating the subjective value of the behavioral options being considered (e.g., whether to quit 
smoking, choose product A or B, donate to a charity, or share a news article; Knutson & 
Genevsky, 2018; Scholz et al., 2017; Tompson, Lieberman, & Falk, 2015). 
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FIGURE 1 BRAIN ACTIVATION 

  

Note: Brain activation implicated in processing information about the self, others’ mental states, and reward value can be used to 
predict how people will behave and make decisions. The relationship between brain activation and behavior is in turn moderated 
by sociocultural factors, including culture and social networks. Temporoparietal junction (TPJ), dorsal medial prefrontal cortex 
(dmPFC), and posterior cingulate cortex (PCC) are frequently implicated in thinking about the mental states of others 
(mentalizing). vmPFC and PCC are also implicated in thinking about the self. Ventral medial prefrontal cortex (vmPFC) and 
ventral striatum (VS) are frequently implicated in processing reward value. Specialized processing in these regions as well as 
communication of information between brain regions is thought to directly support behavior and decision-making, at least in part 
through integration of self and mentalizing processing into a subjective value signal. 

PREDICTING INDIVIDUAL BEHAVIORS 

The majority of research using brain activation to predict behaviors has focused on using an 
individual’s brain activation to predict how that individual will behave in the weeks or months 
following the experimental session. Although a diverse set of research has used brain activation 
to predict behavior, we highlight two domains that have successfully used brain activation to 
predict behavior outside the scanner: health behavior and consumer behavior.  
Within the health domain, the brain-as-predictor approach measures brain activation while an 
individual evaluates persuasive health messages, and then tracks their behavior over the next 
week or month. A study by Falk and colleagues (2010) measured individuals’ brain activation 
while they viewed health messages promoting the benefits of wearing sunscreen. They then 
tracked individuals’ sunscreen usage the week after the study and compared it to their sunscreen 
usage the week prior to the study. Participants who recruited vmPFC more during message 
evaluation were more likely to use sunscreen afterwards, even after controlling for sunscreen 
usage the week prior to the study (Falk, Berkman, Mann, Harrison, & Lieberman, 2010; Vezich, 
Katzman, Ames, Falk, & Lieberman, 2017). Similarly, research in other health domains has 
found that individuals who exhibit greater mPFC activation during message exposure are more 
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likely to engage in health behaviors endorsed by those messages, including increasing physical 
activity (Falk et al., 2015) and reducing smoking (Chua et al., 2011; Cooper, Tompson, 
O’Donnell, & Falk, 2015; Falk, Berkman, Whalen, & Lieberman, 2011; Wang et al., 2013). 
Why does vmPFC activation predict behavior change? Research suggests that vmPFC processes 
the relevance and value of the messages to the individual. In particular, the subregion of vmPFC 
involved in predicting behavior change overlaps with subregions of vmPFC known to be 
involved in both thinking about the self and processing the value of objects to the self (Cooper et 
al., 2015). Moreover, self-affirmation prior to being exposed to health messages promoting 
increased physical activity led to greater vmPFC activation (relative to presenting the messages 
without the self-affirmation) and greater subsequent behavior change (Falk et al., 2015), 
providing experimental evidence that self-processing plays a key role linking vmPFC activation 
and behavior change. 

FIGURE 2. PHYSICAL ACTIVITY BEFORE AND AFTER HEALTH MESSAGES 

  

Note: Falk and colleagues measured physical activity before and after participants were presented with health messages 
promoting exercise while their brain activity was measured in an MRI scanner (2A). Participants exhibited greater activation in 
vmPFC when they were first given an opportunity to affirm positive attributes about the self (2B) and individuals who recruited 
vmPFC more during message exposure were more likely to have fewer sedentary days in the month after the study (2C; adapted 
with permission from Falk, O’Donnell, Cascio, et al., 2015). 

In addition to predicting health behaviors, brain activation can predict consumer behaviors. 
Complementary experimental designs on consumer behaviors examined brain activation while 
participants evaluated explicit appeals designed to persuade the participant to purchase a 
particular product (e.g., Genevsky et al., 2017). Consumer products that elicited greater vmPFC 
and VS activation were more likely to be chosen by individuals (Knutson, Rick, Wimmer, 
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Prelec, & Loewenstein, 2007; Levy et al., 2011). Interestingly, brain activation can predict 
consumer choices even when participants are not explicitly evaluating the choice options. Levy 
and colleagues (2011) had participants passively view consumer products in an MRI scanner 
without making any explicit judgments about the products, and then had participants choose 
which products they wanted to own after the scan. The researchers could accurately predict 
which product a participant would choose based on activation in vmPFC and VS during the 
passive viewing task (Levy et al., 2011).  
Across both domains, brain activity in vmPFC and VS reliably predicts individual differences in 
health change and consumer behaviors. These regions have been implicated in self-related and 
reward processing (Adolphs, 2009; Bartra et al., 2013; Denny et al., 2012; Lieberman, 2007; 
Schurz, Radua, Aichhorn, Richlan, & Perner, 2014), suggesting that people are more likely to 
engage in behaviors or make choices that are high in self-relevance and subjective value. 
Importantly, in many cases brain activation predicts behaviors with an accuracy above and 
beyond those obtained from self-report measures of preferences or intentions (Falk et al., 2011; 
Genevsky et al., 2017). Objective measures of subjective value indexed by vmPFC and VS might 
therefore be providing novel insight into the value or relevance of the outcomes to the 
individual’s salient values, beliefs, and goals. 

INTERPRETING ASSOCIATIONS BETWEEN BRAIN ACTIVATION AND 
BEHAVIOR 

How can understanding the relationship between brain activation and behavior improve our 
understanding of the psychological processes underlying health and consumer behaviors? In this 
review, we highlight three core neuroimaging analysis approaches that examine how the brain 
processes and represents the content of persuasive messages and how this processing predicts 
behavior. The first and most common univariate analysis compares brain activity between two 
conditions, where the only difference between them is the cognitive process of interest. This type 
of analysis underlies the research reviewed in the last section, identifying that brain activity in 
vmPFC and VS reliably predicts individual differences in health change and consumer 
behaviors. The second approach complements the univariate analysis by looking at multivariate 
patterns within a region. The core intuition is that the knowledge represented in a region may be 
distributed across the smaller units of brain tissue within a region (known as voxels in fMRI 
data). Whereas the conventional univariate analysis simply averages the functional activity 
across all subcomponents of an imaged brain region, a multivariate analysis assumes that 
understanding how a region gives rise to psychological processes of interest is coded by the 
distributed pattern in a region. Finally, our review highlights a third neuroimaging analysis 
approach that uses connectivity methods to estimates task-relevant network activity. 
Connectivity research posits that synchronized activity between regions demarcates the 
integration of information across regions, and thus, the functional network dynamics capture the 
spatiotemporal processes necessary for the brain to enable behavior. 
Multivariate pattern analysis (MVPA) or representational similarity analysis (RSA) are two 
analysis methods to quantify how patterns of activation across voxels within a brain region (or 
across the whole brain) relate to behavior. They use the relative similarity of neural activity 
between pairs of trials to make inferences about the content encoded in that region (Kriegeskorte, 
2011; Nili et al., 2014; Norman, Polyn, Detre, & Haxby, 2006). For example, Pegors and 
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colleagues (2017) used RSA to investigate how vmPFC represents information about persuasive 
messages. The multivariate patterns of activation within vmPFC successfully differentiated 
information about whether persuasive messages contained information about health, social, or 
risk consequences of smoking cigarettes (Pegors, Tompson, O’Donnell, & Falk, 2017). 
Furthermore, individual differences in the representation of message content in vmPFC predicted 
whether individuals would reduce their smoking behavior after the study (Pegors et al., 2017). 
Recently, researchers have also begun to employ connectivity-based approaches to predict 
behavior across a diverse set of domains (Brooks et al., 2018; Garcia et al., 2017; Muraskin et 
al., 2017; Passaro et al., 2017). Within the behavioral change literature, researchers have studied 
brain connectivity patterns while participants viewed persuasive health messages, and results 
demonstrated that greater connectivity within a network of brain regions associated with the 
processing of subjective value was linked to greater likelihood of engaging in the health 
behaviors being promoted in the messages (Cooper et al., 2018, 2017). These results suggest that 
integration of information about the subjective value of the messages to the individual is an 
important pathway through which persuasive messages lead to successful behavior change. 
Collectively, all three of these neuroimaging analysis approaches suggest that the individuals are 
more likely to be persuaded by persuasive appeals, choose consumer products, and engage in 
health behaviors when they evaluate those options as more relevant and valuable to the self 
(Falk, O’Donnell, Cascio, et al., 2015; Genevsky et al., 2017). The recent development of 
multivariate and connectivity approaches has improved our ability to predict behavior as well as 
understand how the brain is representing and processing task-relevant information. These 
burgeoning areas of research will likely play an important role in shaping the field in the coming 
years. 

PREDICTING AGGREGATE, OUT-OF-SAMPLE GROUP OUTCOMES 

Brain activation in regions that predict behavior change at the individual level can also be used to 
predict aggregate behavior across groups of individuals whose brains are not scanned (Berns & 
Moore, 2012; Falk et al., 2015; Falk, Berkman, & Lieberman, 2012; Genevsky & Knutson, 
2015). In a persuasive messaging task, brain activation in a small group of participants predicted 
the population-level success of a set of health messages (Falk, O’Donnell, Tompson, et al., 2015; 
Falk et al., 2012); however, the relevance of the message content moderated the relationship 
between brain activation and aggregate group response (Falk, O’Donnell, Tompson, et al., 2015). 
For instance, the relationship between activation in vmPFC, dmPFC, PCC, and TPJ in a small 
group of participants who viewed anti-smoking messages and the percentage of individuals who 
clicked on an email link containing one of the ads (as part of a large-scale email campaign in the 
state of New York) was significantly stronger for ads that were smoking-relevant than for ads 
that were compositionally similar but behaviorally irrelevant (Falk, O’Donnell, Tompson, et al., 
2015). 
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Figure 3 Brain Activation 
 

 

Note: Brain activation in subregion of vmPFC identified in self-localizer task predicted which 
messages would elicit greater responses in a large-scale email campaign (3A). Behavior-relevant 
messages that recruited vmPFC more were more likely to be clicked on, whereas behavior-
irrelevant messages that recruited vmPFC were not any more likely to be clicked on (3B; adapted 
from Falk et al. (2015), by permission of Oxford University Press). 
 
Additional research has shown that brain activation can also predict aggregate consumer 
behavior (Berns & Moore, 2012; Genevsky & Knutson, 2015; Genevsky et al., 2017; Kühn, 
Strelow, & Gallinat, 2016; Venkatraman et al., 2015). One study demonstrated that VS activation 
while a small sample of individuals listened to songs of relatively unknown artists predicted how 
popular those songs will be over the next 3 years, such that songs that elicited greater activation 
in VS sold more albums over the next 3 years (Berns & Moore, 2012). Activation in vmPFC and 
VS also predicted crowdfunding outcomes (Genevsky & Knutson, 2015; Genevsky et al., 2017). 
Images and descriptions for crowdfunding projects that elicited greater vmPFC and VS 
activation while a small group of participants evaluated the projects were more likely to receive 
enough investments to ultimately be funded (Genevsky & Knutson, 2015; Genevsky et al., 
2017). Additionally, ads for chocolate products that elicited greater activation in vmPFC and VS 
led to greater increases in chocolate sales in a supermarket where they were sold (Kühn et al., 
2016). 
While the above research focused on average activation in single brain regions, multivariate 
patterns can in some case better predict behavior than average activation within a single brain 
region or group of brain regions (Genevsky et al., 2017). Whereas models incorporating average 
brain activation in vmPFC and VS (as well as amygdala, insula, and inferior frontal gyrus) 
successfully predicted funding outcomes for projects on a crowdfunding website with 59-61% 
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accuracy (significantly better than chance), whole-brain multivariate patterns were able to 
successfully predict funding outcomes with 65-67% accuracy (Genevsky et al., 2017). 
Across domains, the studies described above show consistently that brain activation improves 
our ability to predict aggregate group behaviors. Brain activation predicts group-level popularity 
of music songs (Berns & Moore, 2012) as well as the group-level success of persuasive health 
messages (Falk, O’Donnell, Tompson, et al., 2015; Falk et al., 2012), consumer product ads 
(Kühn et al., 2016; Venkatraman et al., 2015), and crowdfunding ads (Genevsky & Knutson, 
2015; Genevsky et al., 2017) even after controlling for self-report measures of behavioral 
intentions or preferences of the test sample in response to the messages. In many cases, brain 
activation provides additional information about aggregate group behavior beyond self-report 
measures (Berns & Moore, 2012; Falk, O’Donnell, Tompson, et al., 2015; Genevsky & Knutson, 
2015; Genevsky et al., 2017; Scholz et al., 2017; Venkatraman et al., 2015). 

PREDICTING SOCIAL INTERACTIONS AND PEER INFLUENCE 

In addition to being influenced by mass media campaigns (as described above), peoples’ 
behavior is also routinely influenced by social norms and interpersonal influence (Cialdini, 
Kallgren, & Reno, 1991); to this end, a growing body of literature has explored brain processes 
associated with changing attitudes and behavior in response to peer influence (Cascio, 
O’Donnell, Bayer, Tinney, & Falk, 2015; Klucharev, Hytönen, Rijpkema, Smidts, & Fernández, 
2009; Wasylyshyn et al., 2018), and on the other side of the coin, what motivates people to share 
information with others (Baek, Scholz, O’Donnell, & Falk, 2017; Falk, Morelli, Welborn, 
Dambacher, & Lieberman, 2013; Scholz et al., 2017).  
Brain activity within the value system, as well as regions that help people understand the mental 
states of others (e.g., TPJ, dmPFC) have been implicated in conformity to peer judgments 
(Campbell-Meiklejohn, Bach, Roepstorff, Dolan, & Frith, 2010; Cascio, O’Donnell, et al., 2015; 
Klucharev et al., 2009; Mason, Dyer, & Norton, 2009; Nook & Zaki, 2015; Zaki, Schirmer, & 
Mitchell, 2011). A recent study found that individuals who had greater brain activity in VS and 
TPJ showed stronger susceptibility to conform to their peers’ preferences (Cascio, O’Donnell, et 
al., 2015). In this case, both value regions and mentalizing regions are associated with adapting 
in response to information about others’ preferences, suggesting that people may be integrating 
these two types of information (the value of objects to the self and the value to others).  More 
broadly, people who are more sensitive to social cues in general are also more susceptible to 
conforming to peer influences. Individuals who exhibited the greatest activation in mentalizing 
regions during the common social experience of exclusion were then more susceptible to peer 
influence in a risky driving task in a driving simulator a few weeks later (Falk et al., 2014); these 
results suggest that if one’s brain is more sensitive to potential social threats, it may be adaptive 
to fit in by conforming to peer influences. Individuals who showed greater connectivity between 
mentalizing regions and the rest of the brain were also more susceptible to peer influence 
(Wasylyshyn et al., 2018). These results support the idea that filtering information through 
mentalizing systems is an important pathway through which conformity in social groups 
operates. 
In addition to capturing how people respond to others, brain activation in mentalizing and value 
regions is associated with how people exert influence on others. One way of measuring this 
behavior is by looking at the brain regions and psychological processes that underlie individuals’ 
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choices to share novel information with others. Here, greater activation in vmPFC, VS, and TPJ 
predicted what ideas for television shows individuals were more likely to share (Falk et al., 
2013). In other work, greater activation in vmPFC, VS, PCC, dmPFC, and TPJ was associated 
with decisions to select and share news articles (Baek et al., 2017). 
Brain activation can also provide additional information about aggregate group social 
interactions. Scholz and colleagues (2017) tested whether brain regions involved in self-
processing (e.g., vmPFC and PCC), mentalizing (e.g., dmPFC and TPJ), and subjective value 
(e.g., vmPFC and VS) would be associated with how viral a New York Times article was, 
indexed by how often people shared the article. Activation in all three sets of brain regions was 
positively correlated with greater article virality. More specifically, the effects of self-processing 
and mentalizing on article virality were mediated through subjective value, suggesting that brain 
regions involved in self and social processing index the relevance of the information to the self 
and close others, and that the relevance across domains is combined into a value index which 
then determines whether people share the article (Scholz et al., 2017). 
Collectively, these results indicate that brain activation is a reliable predictor of broader 
susceptibility to social influences on behavior, demonstrating an influence on behavior that 
extends beyond explicitly persuasive messages. Activation in brain regions linked to processing 
the value of the social behaviors to the self as well as considering the social value of the behavior 
to others is particularly relevant to these broader forms of social influence. As we will see below, 
however, the relationship between brain activation and social behavior is also often contingent 
on social context. Social network position, cultural background, and socioeconomic status all 
influence what values, beliefs, and goals are salient for an individual (Markus & Kitayama, 
1991; Stephens, Markus, & Phillips, 2014; Visser & Mirabile, 2004), which in turn influences 
how they process behavioral options such as whether to quit smoking (Pegors et al., 2017), 
respond to peer influence (O’Donnell, Bayer, Cascio, & Falk, 2017), or donate to a charity (Park, 
Blevins, Knutson, & Tsai, 2017). 

SOCIOCULTURAL CONTEXT 

The majority of studies examining the link between brain activation and behavior focus on a 
direct relationship between brain activation and behavior, but to improve our ability to 
understand social behavior, it is also important to understand the heterogeneity in the relationship 
between brain and behavior (Tompson et al., 2015). There are many ways that sociocultural 
context could influence behavior as well as the relationship between brain activation and 
behavior.; however, the two primary routes include (1) normative influence, where individuals 
engage in a behavior because of what other people care about, and (2) individual values and 
beliefs, where individuals engage in a behavior because of their personal interests and concerns. 
A number of psychological theories argue that both individual attitudes and social norms 
influence behavioral intentions (Cialdini et al., 1991; Fishbein & Ajzen, 1975). Extending this 
logic, one’s position in their social network, cultural background, and socioeconomic status will 
also likely influence what norms and beliefs surround an individual. As such, sociocultural 
context may reinforce and promote different types of normative beliefs about how people should 
act and what they should care about; these norms may in turn influence the types of goals, 
values, and beliefs that people hold (Markus & Kitayama, 1991; Riemer et al., 2014). Moreover, 
sociocultural context should also influence how sensitive individuals are to these norms (Riemer, 
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Shavitt, Koo, & Markus, 2014; Stephens et al., 2014), which may be reflected in the brain 
regions recruited when making a choice or evaluating various behavioral options.  
One social factor that likely influences how people evaluate behavioral options is social network 
composition. One study hypothesized the extent to which individuals have close friends who 
smoke should influence how people evaluate anti-smoking messages (Pegors et al., 2017). In 
particular, individuals with more smokers in their network might be exposed to more examples 
of negative impacts of smoking and conversations about the desire to stop smoking, which might 
influence how much the messages resonate with them (Pegors et al., 2017). Results confirmed 
that individuals with more smokers than non-smokers in their social networks who also had 
stronger multivariate patterns representing message content in vmPFC were more likely to 
reduce smoking when exposed to anti-smoking messages (Pegors et al., 2017). This work shows 
that persuasive content can affect behavior differently based on social context and thus how it is 
interpreted and received.  
In addition to social network composition, an individual’s position in their network also 
influences how they respond to information about others’ opinions. Some individuals in a 
network are more ideally positioned to encounter, adopt, and share new information (Burt, 
Kilduff, & Tasselli, 2013). This experience sharing information between groups of individuals 
might relate to an individual’s ability or motivation to take the perspective of others, which 
would in turn influence how they evaluate information about others’ opinions. One study found 
that people who are in a more central position with greater potential opportunities to broker 
information between people in their social network exhibited greater activation in mentalizing 
brain regions when incorporating peers’ preferences into a rating of a smart phone app 
(O’Donnell et al., 2017). Taken together, these studies suggest that social network properties 
influence how individuals process behavioral options. 
Similarly, Schmaelzle and colleagues (2017) examined functional connectivity during one 
common social experience, social exclusion, and found that individuals showed stronger 
connectivity between brain regions involved in mentalizing during exclusion compared to 
inclusion. Interestingly, they also found that this relationship was moderated by social network 
density, such that individuals with less dense friendship networks showed a stronger link 
between mentalizing network connectivity and rejection sensitivity (Schmälzle et al., 2017). It is 
possible that social network composition influences what strategies individuals use when 
interacting with others, which may in turn influence how they respond to social exclusion. 
Frequently interacting with people who are not connected with others in your social group may 
sensitize individuals to potentially excluding others and make them more likely to consider 
others’ perspectives during social interactions. 
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Figure 4 Brain Networks and Social Networks 

  

Note: Brain networks and social networks. Recent work shows that network connectivity within parts of the default mode 
subnetwork is greater following social exclusion (4A), and this effect is moderated by the density of an individual’s social 
network (4B; adapted with permission from Schmaelzle et al., 2017). 

Culture also influences brain activation, including the link between brain activation and 
behavior. Across various different social, cognitive, and affective tasks, people from Western 
cultures were more likely to show greater activation in self-processing or value regions including 
vmPFC, whereas people from Asian cultures were more likely to show greater activation in 
mentalizing regions, including dmPFC and TPJ (Han & Ma, 2014). Results demonstrated that 
when making trait judgments either about the self or a friend, Chinese participants were more 
likely to recruit TPJ to make these judgments whereas Danish participants were more likely to 
recruit vmPFC, and these cultural differences were mediated by differences in interdependence 
(Ma et al., 2012).  
Cultural differences in normative beliefs also influence how people behave when asked to donate 
to charities. People from East Asian cultures value balanced emotions over high arousal, highly 
positive emotions (Tsai, 2007), and as a result, are more likely to donate to recipients whose 
emotional expression matches their cultural norms (Park et al., 2017). That is, East Asians trust 
and donate more money to charities represented by people with calm, balanced facial 
expressions, whereas European Americans trust and donate more money to charities represented 
by people with excited facial expressions (Park et al., 2017). The researchers further found that 
increased trust for people expressing culturally sanctioned emotions led to a stronger value signal 
but reduced mentalizing, and ultimately greater likelihood of donating. Specifically, cultural 
differences in donations were linked to differences in brain activation in VS, PCC, and TPJ (Park 
et al., 2017). TPJ activation was negatively correlated with the fit between an individual’s 
cultural beliefs about what emotions are valued, and individuals were more likely to donate to 
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charities that elicited greater VS activation but weaker PCC and TPJ activation (Park et al., 
2017).  
 Lastly, socioeconomic factors such as parents’ educational status strongly influence how 
individuals perceive choice options (Stephens, Markus, & Townsend, 2007) and their motivation 
to influence versus adjust to their environment (Savani, Markus, & Conner, 2008). As described 
above, activation in social pain and mentalizing regions when individuals are excluded from a 
group was associated with how susceptible individuals were to peer influence in a driving 
simulation weeks later (Falk et al., 2014); however, this effect was moderated by socioeconomic 
status (SES): adolescents from lower SES backgrounds showed a stronger relationship between 
social pain regions and susceptibility to peer influence, whereas individuals from high SES 
backgrounds were more susceptible to peer influence when they exhibited weaker activation in 
social pain and mentalizing regions (Cascio, O’Donnell, Simons-Morton, Bingham, & Falk, 
2017). This work suggests that how individuals respond to and manage negative affective 
reactions to exclusion differs as a function of SES, and activation in social pain regions might 
actually promote susceptibility to peer influence. 
 Taken together, these three lines of research on moderating roles of social networks, 
culture, and SES show that the relationship between brain activation and behavior is context-
dependent. In order to accurately predict behavior, it is therefore important to consider biological 
factors such as brain activation as well as sociocultural factors such social networks, culture, or 
SES. However, none of these studies have considered how multiple sociocultural factors might 
interact. Future research could examine whether social network composition might buffer against 
the effects of SES on neural responses to social exclusion, or investigate if differences in cultural 
values modulate the relationship between social network position and behavior. 

FUTURE DIRECTIONS  

Across the research highlighted in this review, results demonstrate that incorporating measures 
of brain activation improves our ability to predict human behavior at both the individual and 
group level. Furthermore, the specific brain regions and network connectivity patterns provide 
insight into the psychological processes underlying social behaviors such as persuasion, peer 
influence, and information sharing. Critically, these associations were identified between brain 
activation and real-world behaviors, indicating the utility of laboratory research to capture 
behavioral variability within our daily lives; however, there is still progress and advances to be 
made in the experimental paradigms employed to better capture the richness and complexity of 
real-world behaviors and social interactions.  
The majority of the research reviewed here utilized fMRI where participants lie on their backs in 
a scanner with minimal head and body movement, responding to isolated stimuli presented on a 
single computer monitor. While this environment is designed for studying specific cognitive 
processes, without excessive noise overriding the physiological signal of interest or confounds of 
concurrent tasks, the laboratory may not fully capture how tasks are performed in the real-world, 
where our bodies and eyes move freely while we perform multiple, concurrent tasks (Vettel et 
al., 2012). Even in laboratory settings, complex, naturalistic stimuli elicit different patterns of 
activation and inter-regional connectivity compared to more controlled, experimentally 
manipulated stimuli (Hasson, Malach, & Heeger, 2010). This complements additional studies 
that have also identified performance differences when tasks are embedded in naturalistic 
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contexts (Gramann et al., 2011; Kingstone, Smilek, Ristic, Kelland Friesen, & Eastwood, 2003; 
Oie & McDowell, 2011; Shackman, Maxwell, McMenamin, Greischar, & Davidson, 2011).   
Recent advances in portable neuroimaging technologies, such as several commercial EEG 
systems (Hairston et al., 2014; Ries, Touryan, Vettel, McDowell, & Hairston, 2014) make it 
possible to measure brain activation while individuals are navigating complex environments 
(McDowell et al., 2013; Melnik et al., 2017; Oliveira, Schlink, Hairston, König, & Ferris, 2016a, 
2016b). Thus, we contend that the brain-as-predictor approach provides a productive framework 
to study real-world behaviors when combined with ongoing innovations in mobile neuroimaging 
and artifact rejection techniques (Lawhern, Hairston, McDowell, Westerfield, & Robbins, 2012; 
Oliveira, Schlink, Hairston, König, & Ferris, 2017). For example, in many studies on social 
exclusion and peer influence, participants never actually meet their interaction partners. Mobile 
neuroimaging makes it possible to measure brain activation while individuals are navigating 
complex social dynamics, which can provide further insight into how individuals behave in 
naturalistic social interactions. For instance, the degree to which students in a classroom have 
brain patterns that are in sync with one another predicts classroom engagement and social 
dynamics, suggesting that shared attention in group settings is a potentially important feature of 
successful teaching (Dikker et al., 2017). Ongoing work in our laboratories examines how dyadic 
communication is influenced by the real-world risk of driving along the interstate while a 
passenger communicates stories to the driver (Vettel et al., 2018).  Likewise, tools from 
computational social science (e.g., social network analysis; computational linguistic methods; 
geolocation tracking) are rapidly making it more possible to integrate large amounts of 
information about an individual’s specific social environment into models of brain-behavior 
relationships. 
In addition to considering how new tools (such as mobile neuroimaging) might enable 
researchers to better model brain-behavior relationships, it is also important to consider how this 
knowledge might be applied to influence or inform how individuals behave. In other cases, this 
work might be helpful in understanding how to increase more personal resilience to deception or 
manipulation. The studies described above reveal a few key insights. First, neuroimaging 
research can help identify which messages or techniques are most likely to be effective in 
influencing behavior (e.g., Falk, O’Donnell, Tompson, et al., 2015). Second, neuroimaging 
research can help identify which individuals are more or less susceptible to influence (e.g., 
Wasylyshyn et al., 2018). However, the third, and most important, insight is that these studies 
indicate that brain connectivity is shaped by, and malleable to, environmental factors. Contextual 
factors such as social networks (e.g., Pegors et al., 2017) and short-term shift in mindset (e.g., 
Falk, O’Donnell, Cascio, et al., 2015) can influence the brain-behavior relationship, including 
how people respond to persuasive appeals. Thus, while neuroimaging research can potentially 
identify which individuals will be more likely to change their behaviors, it is also possible to use 
neuroimaging to identify how and when persuasive appeals are more or less effective. 

CONCLUSION 

In this chapter, we have discussed evidence that brain activation, including multivariate patterns 
of activation within and connectivity between brain regions, is associated with individual and 
aggregate health behaviors (Cooper et al., 2015; Falk, O’Donnell, Cascio, et al., 2015; Falk et al., 
2011), individual and aggregate consumer behaviors (Genevsky & Knutson, 2015; Genevsky et 
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al., 2017; Levy et al., 2011), responses to social exclusion (Schmälzle et al., 2017), responses to 
peer influence (Cascio, O’Donnell, et al., 2015; Falk et al., 2013; Wasylyshyn et al., 2018), and 
information sharing (Baek et al., 2017; Scholz et al., 2017). In many cases, brain activation 
provides information that predicts behavior with an accuracy that is above and beyond that 
obtained from self-report measures of attitudes, preferences, or intentions (Falk, O’Donnell, 
Tompson, et al., 2015; Genevsky et al., 2017; Venkatraman et al., 2015) 
Across these diverse domains, brain regions involved in social and reward processing are 
frequently associated with behavior, suggesting that brain activation might be providing insight 
into how people process information about the reward value of various options or outcomes as 
well as how they consider the perspective and mental states of others. In particular, vmPFC and 
VS are most often associated with behavior in domains where behaviors are primarily self-
focused (e.g., health behavior change, consumer choices). By contrast, dmPFC and TPJ are more 
often implicated in domains where others’ thoughts and opinions are relevant (e.g., information 
sharing, social influence, and exclusion). 
Moreover, the association between brain activation and individual and group behavior is context-
dependent. Social factors including social network position, culture, and socioeconomic status 
influence individuals’ beliefs, values, and goals (Markus & Kitayama, 1991; Stephens et al., 
2014; Visser & Mirabile, 2004), which in turn influence how they make decisions (Perry-Smith 
& Shalley, 2003; Riemer et al., 2014; Stephens et al., 2007), interact with close and distant others 
(Xie, Cairns, & Cairns, 1999; Wagner, Humphrey, Meyer, & Hollenbeck, 2012), and process 
persuasive messages (Uskul & Oyserman, 2010; van Noort, Antheunis, & van Reijmersdal, 
2012). These effects of social context are then reflected in the relationship between brain 
activation and behavior. The extent to which social and reward-related brain regions are linked to 
individual behavior is influenced by social network position (O’Donnell et al., 2017; Pegors et 
al., 2017), culture (Park et al., 2017; Tompson et al., 2015), and socioeconomic status (Cascio et 
al., 2017; Muscatell et al., 2012). 
Recent advances in multivariate approaches for analyzing brain data can also improve our ability 
to predict behavior and provide additional insight into the psychological processes mediating this 
effect. MVPA and RSA provide insight into how individual brain regions encode information 
about behavioral options (Kriegeskorte, 2011), whereas network approaches provide insight into 
how brain regions work together to evaluate information about the behavioral options (Bassett & 
Sporns, 2017). 
In sum, neuroimaging research can advance understanding of how group-level dynamics emerge, 
including how public service announcements influence ad campaign success (Falk et al., 2015; 
Venkatraman et al., 2015), how information spreads throughout a group (Baek et al., 2017; 
Scholz et al., 2017), and how information about group members’ opinions influence individual 
behaviors (Berns, Capra, Moore, & Noussair, 2010; Cascio, O’Donnell, et al., 2015; Tomlin, 
Nedic, Prentice, Holmes, & Cohen, 2013). These methods provide novel insights into how 
individuals behave in a social world and will serve as useful tools for researchers aiming to 
understand and predict human behavior. 
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