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Abstract

Quitting smoking is notoriously difficult. Models of nicotine dependence posit that

strength of cognitive control contributes to maintaining smoking abstinence during

smoking cessation attempts. We examine the role for large-scale functional brain sys-

tems associated with cognitive control in smoking lapse using a novel adaption of a

well-validated behavioral paradigm. We use data from 17 daily smokers (five females)

after 12 h of smoking abstinence. Participants completed up to 10 sequential 5-min

functional magnetic resonance imaging (fMRI) runs, within a single scanning session.

After each run, participants decided whether to stay in the scanner in order to earn

additional money or to terminate the session in order to smoke a cigarette (i.e., lapse)

and forego additional monetary reward. Cox regression results indicate that

decreased segregation of the default mode system from the frontoparietal system

undermines the ability to resist smoking. This study demonstrates the feasibility of

modifying an established behavioral model of smoking lapse behavior for use in the

neuro imaging environment, and it provides initial evidence that this approach yields

valuable information regarding fine-grained, time-varying changes in patterns of

neural activity in the moments leading up to a decision to smoke. Specifically, results

lend support to the hypothesis that the time-varying interplay between large-scale

functional brain systems associated with cognitive control is implicated in smoking

lapse behavior.
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1 | INTRODUCTION

Quitting smoking is notoriously difficult, with the majority of cessation

attempts ending in relapse (i.e., return to regular smoking).1 Models of

nicotine dependence posit that deficits in cognitive control contribute

to continued smoking after a quit attempt in two key ways. A reduced

ability to override impulses to smoke can bias decisions toward

smoking over alternative nondrug reinforcers2 and can promote a

return to smoking in order to ameliorate abstinence-related cognitive

control deficits.3 In line with these proposals, smokers exhibit impaired

inhibitory control and working memory relative to nonsmokers4,5;

smokers show impaired cognitive control performance during smoking

abstinence relative to smoking satiety6; and poorer performance on

working memory tasks and inhibitory control tasks is associated with

more rapid smoking resumption following smoking abstinence.7 Here,

we extend research on the role of cognitive control in smoking

cessation by examining how functional brain systems associated with

cognitive control are correlated with smoking lapse.

One of the best predictors of relapse following a smoking

cessation attempt is experiencing a lapse (i.e., any smoking after initial

cession).8 Although lapses can represent just a single puff on a

cigarette,9 the majority of participants who lapse go on to relapse and

resume regular smoking.10 The first lapse during a cessation attempt,

then, often represents a gateway toward relapse. Findings that

reduced cognitive control is associated with relapse provide initial

evidence that limitations in cognitive control are implicated in

smoking lapses.11

Yet, the nature of lapses, as defined by discrete moments embed-

ded within cessation attempts, challenges the identification of their

precipitants. A second challenge for studying smoking lapses is that

the precipitants of lapses may themselves change from moment to

moment. Indeed, in the case of cognitive control processes such as

working memory, inhibitory control, and sustained attention, substan-

tial day-to-day12 and even moment-to-moment13 fluctuations in

performance have been observed. Within-person fluctuations have

also been observed in the functional brain organization of systems

involved in cognitive control.14 Observations of fluctuations in cogni-

tive control and cognitive control-relevant functional brain systems

encourage a consideration of functional brain systems in the moments

immediately preceding lapses given that the status of processes

(e.g., negative affect) in moments more proximal to lapses are more

predictive of smoking lapses than data collected further back in time

(e.g., hours before lapse vs. day before lapse).15

Laboratory smoking lapse paradigms represent an efficient and

cost-effective way to overcome the difficulty of isolating lapse behav-

iors as they occur.16 In an increasingly used lapse paradigm, smokers

are exposed to known precipitants of smoking relapse behavior,

including nicotine deprivation, alcohol, and stress.17–19 Smokers are

then given the option of beginning tobacco self-administration or

delaying self-administration by 5-min increments for up to 50 min in

exchange for monetary reinforcement. The delay period models

smokers' ability to resist smoking, with shorter relative to longer times

to lapse reflective of lower abilities to resist smoking. This lapse para-

digm demonstrates validity, showing sensitivity to the effects of medi-

cations with known clinical efficacy for smoking cessation,20 and, to

date, has supported the role of alcohol, stress, nicotine and food depri-

vation, exposure to smoking environment cues, and the devaluation of

monetary rewards in facilitating lapse behavior in the laboratory.17–24

In the present study, we overcome the challenges associated with

identifying the role of cognitive control-relevant functional brain

systems in smoking lapses by observing participants as they engage in

a laboratory smoking lapse paradigm, accompanied by functional

magnetic resonance imaging (fMRI). In addition to demonstrating the

feasibility of this novel methodological approach, our goal is to provide

insight into the role of cognitive control-relevant functional brain

systems in efforts to resist the urge to smoke, specifically in the

minutes preceding a lapse. We focus on interactions between two

large-scale functional brain systems that are known to support cogni-

tive control. The frontoparietal system is composed of regions with

roles in response suppression,25 working memory,26 and attentional

control,27 processes relevant for changes in smoking behavior.7 The

default mode system is characterized by a tendency to deactivate

during many cognitive tasks and to activate at rest, as well as during

self-referential and social tasks.28,29 Evidence suggests that the integ-

rity of functional connectivity of the default mode and frontoparietal

systems, as well as their interactions, is fundamental to cognitive con-

trol. In particular, greater strength of connectivity among the default

mode and frontoparietal systems, indicating reduced segregation of

activity between the two systems, is associated with poorer working

memory and inhibitory control performance.30,31 Given the associa-

tion between cognitive control and the segregation of the default

mode from the frontoparietal system, we hypothesized that greater

default mode and frontoparietal system segregation would protect

against lapses during a smoking lapse paradigm. Notably, by taking

continuous fMRI measurements during the course of the lapse task,

we also capture potentially time-varying changes in functional connec-

tivity of the systems theorized to be associated with lapse behavior.

We additionally collect self-ratings of affect, arousal, urge to

smoke, and the extent to which participants resisted the urge to

smoke during the course of the lapse task. Self-reports are much

easier to obtain than fMRI measurements. Yet, an increasing body of

literature indicates the promise of using indices of neural activity to

predict smoking-related behaviors.32–34 Although fMRI measurements

are costly to obtain, they overcome some limitations of self-reports,

including social desirability effects35 or a lack of conscious access to

factors implicated in behavior,36 and allow the capture of activity in
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systems underlying multiple cognitive and affective functions simulta-

neously. Thus, as a second aim, we test whether associations between

default mode and frontoparietal system segregation and lapse behav-

ior are observed above and beyond self-ratings collected during the

smoking lapse paradigm.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were 20 individuals (eight females) recruited using

newspaper, radio, and Internet advertisements and flyers posted in

the community. To be eligible for the study, individuals were required

to be right handed, to be between the ages of 18 and 45 years, to

report that they smoked at least 10 cigarettes per day for the past

24 months, to indicate that they were not currently planning to quit

smoking or actively pursuing any form of smoking cessation treat-

ment, and to have a baseline expired-air carbon monoxide (CO) level

greater than 10 parts per million (ppm); the latter criterion was chosen

in order to verify smoking status (BreathCO, Vitalograph, Lenexa,

Kansas). Individuals were excluded if they reported any of the

following during an initial telephone screening: current heavy use of

illicit substances (defined as illicit drug use on 10 or more days in the

past 30 days), current use of prescription medications that have been

found to affect blood flow responses in the brain, current psychiatric

diagnoses, chronic cardiovascular or respiratory problems, and/or any

contraindications for magnetic resonance imaging (MRI). All

procedures were approved by the Pennsylvania State University

Institutional Review Board, and written informed consent was

obtained from all participants.

2.2 | Procedures

Demographic and smoking-related variables, including age, the

average number of cigarettes smoked per day, and Fagerström Test

for Cigarette Dependence (FTCD),37 were collected at an initial

baseline session. Participants then completed an fMRI session on a

subsequent day. They were instructed to abstain from smoking and

from using any nicotine-containing products for at least 12 h prior to

the scan session. Upon arriving for the fMRI experiment, participants

reported the last time they smoked a cigarette, and a CO sample was

obtained to verify compliance with these instructions; compliance

was defined as <8 ppm or ≥50% reduction from their baseline CO

level. Participants then completed the following surveys to assess

affective state, nicotine withdrawal symptoms, and the urge to

smoke: the Positive and Negative Affect Schedule,38 the Wisconsin

Smoking Withdrawal Scale,39 and the Questionnaire of Smoking

Urges—Brief.40

After completion of the surveys, participants were given an

overview of the remainder of the experimental visit. Specifically, they

were told that they would be placed in the MRI scanner to complete

tasks, where they would remain for up to 90 min, and that they would

then complete additional questionnaires for approximately 2 h after

being removed from the scanner. Participants were explicitly informed

that the entire visit would last 4 h (including the 2 h required to com-

plete post-scan questionnaires), and that they would have to remain

in the lab for this amount of time even if they finished the question-

naires early, to disincentivize ending the scan early to shorten the

overall appointment duration.

Next, participants were given instructions for an fMRI reward task

not reported on here before being placed in the scanner. Following

the acquisition of anatomical data, participants then completed a

3.5-min resting baseline scan and six runs of the reward task, each

lasting approximately 5 min. At this point, participants could decide to

leave the scanner and smoke a cigarette rather than taking part in the

next in-scanner task. Participants deciding to stay in the scanner

(n = 17) performed an fMRI task modeling smoking lapse behavior

adapted from prior behavioral research,20 which is the focus of the

current study.

At the beginning of the fMRI smoking lapse task, participants

were informed that they would be given the opportunity to smoke

immediately after being removed from the scanner but that they

would be given the chance to earn extra money by delaying their

removal to complete additional scans. Specifically, they were told that

they could choose to remain in the scanner for up to 50 additional

min, earning $1 for every 5 min that they remained in the scanner

(i.e., up to $10 total), and that they would be asked to indicate via but-

ton press whether or not they would like to remain in the scanner

before each 5-min scan began. After receiving instructions,

participants provided visual analog scale ratings of their affect (from

unpleasant to pleasant), their level of arousal (from sleepy to aroused/

activated), and their urge to smoke (from no urge at all to strongest urge

ever), with each scored on a 0–100 range.

Participants then completed the following sequence for each of

up to 10 5-min runs. First, participants pushed one of two buttons to

signify whether they would like to start the subsequent 5-min run of

the smoking lapse task or be removed from the scanner. Next, those

who elected to remain in the scanner completed a 5-min run of the

task, during which they were asked to relax and remain as still as pos-

sible with their eyes open. (If the participant instead chose to be

removed from the scanner, they were taken out of the MRI at that

point and did not complete any additional runs of the task.) Finally,

immediately after the run ended, participants used visual analog scales

to rate their affect, level of arousal, and urge to smoke, as well as to

rate how much they were trying to change or resist their urge to

smoke during the previous run (from not at all to very much).

Participants were given the opportunity to smoke after being

removed from the scanner during a 10-min break, after which they

completed additional questionnaires (not reported here). The session

concluded once participants had been in the lab for a total of 4 h, at

which point they were paid the money that they earned during the

smoking lapse task (up to US$10) and the fMRI reward task (US$10)

in cash. Participants also earned $40 ($10/hour) for completing the

session, which was sent to them as a check via mail.
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2.3 | Data preparation

A summary of our preparation and analysis of the functional imaging

data from the smoking lapse task is as follows: We preprocessed and

denoised the BOLD time series, after which we created an association

matrix representing the functional connectivity among regions of the

brain for each participant and each 5-min block. We then quantified

default mode and frontoparietal system segregation for each associa-

tion matrix. We provide additional detail below.

2.3.1 | Data acquisition

Scanning was conducted at the Penn State Social, Life, and

Engineering Sciences Imaging Center using a 3-T Siemens Trio scan-

ner (Siemens Corporation, NY). Prior to functional scanning, a high-

resolution T1-weighted (T1w) anatomical image was acquired

(256 × 256 matrix; FOV = 256 mm2; 160 1-mm sagittal slices). During

functional scanning, 34-slice oblique-axial functional images

(3 × 3 × 3 mm voxels) were acquired using a standard echo-planar

imaging pulse sequence (TR = 2000 ms, TE = 25 ms, FOV = 192 mm,

flip angle = 80�).

2.3.2 | Data preprocessing

Initial preprocessing of the brain imaging data was performed using

fMRIPrep 1.4.1rc1.41 A detailed overview of the steps taken is

provided in the supplement. We then denoised the fMRI data with a

protocol based on studies that evaluated the performance of a wide

variety of denoising pipelines in mitigating motion artifact in studies

of BOLD functional connectivity42 using the publicly available

eXtensible Connectivity Pipeline (XCP) software.43 Six head motion

regressors and three matter regressors (global signal, white matter,

and cerebrospinal fluid) as well as their derivatives, quadratic terms,

and the squares of their derivatives (36 regressors in total) were

regressed from the time series. We also conducted despiking—

identifying outliers in the intensity of each voxel's detrended BOLD

time series and interpolating over these outliers.

2.3.3 | Creating an association matrix

Using the preprocessed and denoised BOLD fMRI data, we created an

association matrix representing the strength of functional connectivity

between pairs of brain regions. We defined regions of the default

mode and frontoparietal systems on a commonly applied parcellation

scheme,44 the coordinates of which can be found in the Supporting

Information. For each region, we extracted a time series of the BOLD

signal separately for each individual. All regions were modeled as

10-mm-diameter spheres around the center coordinates. The

extracted time series were the average time series for all voxels within

the sphere. The spherical regions represented nodes in functional

connectivity networks. Pairwise Pearson correlation coefficients

between node time series were used as network edge weights. Similar

to previous functional connectivity studies (e.g., 45), negative correla-

tions were set to 0 to eliminate potential misinterpretation of negative

edge weights.

2.3.4 | Default mode and frontoparietal system
segregation measure

We calculated the strength of default mode and frontoparietal system

segregation by taking the average of two system segregation

measures.45,46 First, we computed a default mode system segregation

measure:

Default mode system segregation=
�zw−�zb
�zw

, ð1Þ

where �zw is the mean connectivity strength of edges between all pairs

of nodes in the default mode system and �zb is the mean connectivity

strength of edges between all pairs of nodes that spanned the

default mode and the frontoparietal systems. Higher values of the

default mode system segregation indicate greater segregation of

the default mode system from the frontoparietal system. We addition-

ally computed the strength of frontoparietal system segregation from

the default mode system switching the places of the default mode

and frontoparietal systems in Equation (1).

Both measures of system segregation contain a measure of

between-system connectivity but are unique in the system for which

they capture within-system connectivity. To provide an overall

measure of default mode and frontoparietal system segregation, we

take the average of the default mode system segregation and

frontoparietal system segregation indices (see also 45 for use of a

similar average system segregation index).

2.4 | Data analysis

2.4.1 | Default mode and frontoparietal system
segregation and lapse behavior

We hypothesized that default mode and frontoparietal system segre-

gation would be protective against deciding to leave the scanner in

order to smoke a cigarette rather than remaining in the scanner in

order to earn a monetary incentive. We adopted a survival analysis

framework, a framework in which the outcome variable is the timing

of an event, to test this hypothesis. In the current analyses, the rele-

vant event is the decision to leave the scanner. In the present study,

there were nine event times, or moments at which a participant could

decide to leave the scanner during the smoking lapse task (i.e., at

the end of Blocks 1 through 9). Of the 20 participants enrolled in

the study, three participants decided to smoke rather than to begin

the smoking lapse task. These left-censored cases, in which the event
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occurred prior to or coincident with the start of the observation

period, were not included in the analysis as they provided no fMRI

data for the smoking lapse task. Of the remaining 17 participants, four

did not choose to leave the scanner at any point during the 10 blocks.

Survival analysis was developed in part to handle right-censored

cases, and, as such, these four right-censored cases are readily

accommodated.

A participant's likelihood of staying in the scanner may be associ-

ated with different types of predictors, both time-invariant (e.g., age)

and time-varying (e.g., default mode and frontoparietal system

segregation within each scanning block). We estimate the survival

function, reflecting the cumulative loss of all participants in the

sample. Formally, the survival function is expressed as

S tð Þ=Pr T > tð Þ ð2Þ

and gives the probability that a participant will stay in the scanner

past time t. We also estimate the hazard rate, which is the risk of

leaving the scanner given that the participant has stayed in the scan-

ner up to a specific time, and we determine whether the function

differs systematically in relation to predictor variables. We use a Cox

regression model to examine how the hazard rate is related to

default mode and frontoparietal system segregation during each

scanning block of the smoking lapse task. We fit a Cox regression

model specified as

hi tð Þ= h0 tð Þexp β1Agei + β2Segregationi tð Þð Þ, ð3Þ

where the hazard of deciding to leave the scanner at time t depends

on the product of the baseline hazard h0(t) and an exponentiated

linear function of q predictors that may be time-invariant or time-

varying. We include the time-invariant predictor of age, β1, and the

time-varying predictor of default mode and frontoparietal system

segregation during each scanning block directly preceding the

decision, β2, the value of which varies from scanning block to block.

Of greatest interest was the test of whether the parameter β2

was different than 0 (i.e., that there is an association between default

mode and frontoparietal system segregation and the hazard of

choosing to leave the scanner to smoke a cigarette). Parameters were

transformed into a more easily interpreted hazard ratio metric

(HR = exp[β]), which can be interpreted as the change in the risk of

leaving the scanner if the parameter in question rises by one unit:

HR = 1.00 indicates no association between the predictor and out-

come variable, HR > 1 indicates higher hazard of event occurrence for

higher values of the predictor, and HR < 1 indicates lower hazard of

even occurrence for higher values of the predictor. HRs can also be

interpreted as percent change in hazard as 100 × [HR-1]. We included

age as a time-invariant covariate because previous work indicates that

default mode and frontoparietal system segregation decreases with

age.45 All predictor variables were standardized to increase the inter-

pretability of the resulting coefficients.

We fit the model using PROC PHREG by implementing the

counting process style of input. The discrete nature of event

quantification (block by block) resulted in tied times during which par-

ticipants decided to leave the scanner. We used the “tie = exact”
option in SAS PROC PHREG to accommodate these tied events.

2.4.2 | In-scanner motion and smoking behavior

In an additional model, we tested the extent to which associations

between default mode and frontoparietal system segregation and

lapse behavior remained significant when controlling for participant

motion during each scanning block and the number of cigarettes

smoked per day reported at baseline.

2.4.3 | Self-reports and smoking lapse behavior

We added time-varying self-ratings of affect, arousal, and urge to

smoke prior to each scan block and post-scan block self-ratings of

how much participants were trying to change or resist their urge to

smoke during the previous run to the model specified in Equation (3).

This allowed us to examine the extent to which the default mode and

frontoparietal system segregation measure was associated with lapse

behavior controlling for these self-reports.

2.4.4 | Time-invariant default mode and
frontoparietal system segregation and lapse behavior

Our use of a measure of default mode and frontoparietal system seg-

regation from each scanning block reflects an assumption that the

time-varying nature of segregation is important for predicting lapse

behavior. An alternative possibility is that a time-invariant

segregation measure would be sufficient to predict lapse behavior.

To examine this possibility, we took the average measure of each

participants' default mode and frontoparietal system segregation

values across their repeated measures and used this average mea-

sure as a time-invariant version of default mode and frontoparietal

system segregation. We used this time-invariant default mode and

frontoparietal system segregation measure as a predictor of time to

smoking lapse instead of the time-varying default mode and

frontoparietal system segregation measure in a model similar to that

shown in Equation (3).

2.4.5 | Additional analyses

Additional analyses that are tangential to the main manuscript but

that may be of interest to some readers are included in the supple-

ment. These include analyses using alternative constructions of the

segregation measure and a consideration of the salience system, given

previous work implicating a role for the salience network in cognitive

control. We observe no evidence for a role for the salience system in

leaving the scanner in the present study.
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3 | RESULTS

3.1 | Participant characteristics and descriptive
statistics

As detailed above, 17 participants (five females) provided data for the

survival analysis. The mean age of these participants was 24.41 years

(SD = 6.90). The self-identified racial/ethnic composition of the usable

sample was as follows: 82% White, 6% Asian, and 12% unreported.

Participants reported smoking an average of 13.41 (SD = 3.62) ciga-

rettes per day and had a baseline CO level of 19.53 ppm (SD = 7.19).

Additional characterization of the sample may be found in Table S1.

We provide descriptive statistics of key model variables in

Table 1. Figure 1 shows the survival times for each participant (pres-

ence of square on horizontal lines) grouped by scanning block, in addi-

tion to the value of default mode and frontoparietal system

segregation within each block for each participant. Right-censored

cases (n = 4) do not have X's at the end of their rows to indicate that

the event of interest (smoking lapse) was not observed in these

participants.

3.2 | Default mode and frontoparietal system
segregation and lapse behavior

We estimated the baseline survival function with an unconditional

(baseline hazard) model. We then added age and the default mode and

frontoparietal system segregation variable to the model. Goodness of

model fit was tested using a likelihood ratio test that compared the fit

of the model with age and default mode and frontoparietal system

segregation as predictors relative to the unconditional model. The like-

lihood ratio test was significant, χ2(2) = 6.67, p = 0.04, indicating that

the model with age and default mode and frontoparietal system segre-

gation fit the data better than the unconditional model.

Results of the model (Table 2) indicate that the extent of default

mode and frontoparietal system segregation in the scanning block

immediately preceding the decision to stay or leave the scanner was

associated with the choice to leave the scanner in order to smoke a

cigarette, β2 = − 0.76, p = 0.04. As hypothesized, with one standard

deviation increase in the segregation variable (predictor variables

were standardized prior to model estimation), participants were 0.47

times (HR = 0.47) as likely, or 53% less likely (percent

change = 100 × [0.47–1.00] = −53%), to choose to leave the scanner

in order to smoke a cigarette.

3.3 | In-scanner motion and smoking behavior

Follow-up analyses indicate that the association between default

mode and frontoparietal system segregation and the choice to leave

the scanner was robust to including participant motion and cigarettes

per day (Table S2) and FTCD score at baseline (Table S3).

3.4 | Self-reports and smoking lapse behavior

The association between default mode and frontoparietal system seg-

regation remained significant (β = − 1.11, p = 0.03) when time-varying

self-reports of affect, arousal, and urge to smoke prior to each scan

block and post scan block self-ratings of how much participants were

trying to change or resist their urge to smoke during the previous run

were included as covariates (Table S4). Included in the same model,

no significant independent associations emerged between self-reports

and lapse behavior. The association between default mode and

frontoparietal system segregation also remained significant when each

self-rating was included as the only self-rating in the model

(Tables S5–S8). In these models, with each self-rating in separate

models, both higher urges to smoke reported prior to the scan block

F IGURE 1 Survival times (x-axis) for each
participant (separate lines on y-axis). Event times
(leaving the scanner to smoke a cigarette) are
indicated by an X. Four participants remained in
the scanner for the entire 50 min. Each scan run
for each participant is colored to indicate the
magnitude of default mode and frontoparietal
system segregation (z-scored and residualized to
account for correlation with age). Lighter colors
indicate greater segregation
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(β = 1.68, p = 0.03) and greater reported efforts to change or resist

the urge to smoke during the previous run (β = 1.17, p = 0.04) were

associated with a higher likelihood of deciding to leave the scanner.

Repeated measure correlations between the default mode and

frontoparietal system segregation measure and the self-report scales

indicated no significant associations between segregation and urge to

smoke, r(53) = 0.01, p = 0.92; arousal, r(53) = 0.05, p = 0.71; or efforts

to resist smoking urges, r(53) = −0.001, p = 0.99. Affect had the stron-

gest correlation with segregation, r(53) = 0.26, p = 0.06, such that

greater default mode and frontoparietal system segregation was asso-

ciated with more positive affect prior to the scan block. This correla-

tion was not significant, though affect was significant correlated with

the default mode system segregation measure, r(53) = 0.33, p = 0.02.

3.5 | Time-invariant default mode and
frontoparietal system segregation and smoking lapse

There was no evidence (Table S9) that the association between

default mode and frontoparietal system segregation and time to

smoking lapse was significant when using a time-invariant version of

default mode and frontoparietal system segregation, β = − 0.61,

p = 0.15. This suggests the added value of capturing temporal dynam-

ics in system segregation across time.

4 | DISCUSSION

One of the best predictors of smoking relapse is the experience of a

lapse during a cessation attempt.10 To provide insight into the ante-

cedents of smoking lapses, we examined the association between

cognitive control-relevant functional brain systems and smoking lapse

behavior. In line with our hypothesis, decreased default mode and

frontoparietal system segregation undermined the ability to resist

smoking in a sample of daily smokers who were deprived of nicotine

for over 12 h.

The current study extends a laboratory paradigm modeling

smoking lapse behavior20 into the neuroimaging setting. Capturing

BOLD fMRI during an attempt to resist smoking to earn a monetary

incentive allowed us to test the role for large-scale functional brain

systems associated with cognitive control in prompting lapse behav-

ior. Our focus on connectivity among the default mode and

frontoparietal systems reflects the importance of these systems in

cognitive control abilities, with findings that segregation of these

systems from one another supports accurate cognitive control

performance.30,31 In the context of cigarette smoking specifically,

improvements in cognitive withdrawal symptoms after nicotine

replacement are associated with increased inverse coupling between

default mode and frontoparietal systems.47 Our findings are consis-

tent with behavioral studies indicating that poorer cognitive control

task performance is associated with more rapid smoking resumption

following smoking abstinence7 and further build upon them by consid-

ering brain dynamics in real time during decisions to resist smoking.

Interestingly, self-ratings of affect, arousal, and urge to smoke

prior to scan blocks and post-scan block ratings of how much partici-

pants resisted the urge to smoke were not independently significantly

associated with decisions to leave the scanner in order to smoke a cig-

arette. When self-ratings were considered separately from all other

self-ratings, both higher urges to smoke reported prior to a scan block

and greater reported efforts to change or resist the urge to smoke

during the previous run were associated with a higher likelihood of

deciding to leave the scanner. In the context of these significant asso-

ciations between self-ratings and decisions to leave the scanner, sys-

tem segregation remained a significant predictor of lapse behavior.

These findings add to a body of literature indicating the promise of

neural activity in predicting smoking-related behaviors.32–34 For

example, existing work has observed associations between BOLD

activity in the left dorsolateral prefrontal cortex and posterior cingu-

late during an N-back working memory task and the ability to remain

abstinent during a 7-day quit attempt.34 With these findings, neuroim-

aging is emerging as a tool to predict behavior, providing an alterna-

tive to efforts to predict future behavior through self-reports that

may contain biases stemming from social desirability effects35 or that

may fail to predict behavior due to a lack of conscious access to

factors implicated in behavior.36

Although not associated with lapse behavior, there was some

evidence for a correlation between self-ratings of affect and default

mode system segregation. More positive affect was reported prior to

scans during which segregation between the default mode and

frontoparietal systems was greater than usual. Positive affect has

been theorized to inhibit craving by facilitating self-regulation, and,

consistent with this perspective, high positive affect is associated with

reduced cravings during tobacco, alcohol, and opioid withdrawal.48

Results of the present study, coupled with findings that positive mood

TABLE 2 Cox regression results testing association between default mode and frontoparietal system segregation and age on hazard of
choosing to leave the scanner to smoke

Predictor Estimate Standard error p Hazard ratio 95% confidence interval of hazard ratio

System segregation −0.76 0.38 0.04 0.47 0.22–0.98

Age −1.05 0.66 0.11 0.35 0.10–1.27

−2 log likelihood 38.50

AIC 42.50

Notes: N = 17 persons. Likelihood ratio test: χ2(2) = 6.67, p = 0.04.

Abbreviation: AIC = Akaike Information Criteria.
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is associated with increased flexibility in large-scale brain networks,49

are consistent with the perspective that positive mood facilitates self-

regulation via modulating functional connectivity associated with cog-

nitive control. Notably, however, functional connectivity predicted

lapse behavior above and beyond self-rating of affect (Table S6),

suggesting that although positive affect may modulate the extent of

default mode and frontoparietal system segregation, it is not sufficient

to predict lapse behavior on its own.

Taken together, the findings have potentially significant implica-

tions for both methodology and understanding and eventually treating

addiction. First, we show the feasibility of taking a behavioral smoking

lapse task, which has provided key insights into the antecedents of

smoking lapse behavior,17–24 into the neuroimaging environment. This

opens the door for future research aiming to characterize neural

correlates associated with smoking lapses, which, to date, has been

difficult due to the nature of lapses, defined by discrete moments

embedded within cessation attempts. Understanding the brain

processes that precede lapses may suggest novel intervention

possibilities. Second, findings that fluctuations in patterns of

functional connectivity associated with cognitive control, but not

person-averaged, time-invariant patterns of functional connectivity,

were associated with smoking lapses highlight the importance of con-

sidering the time-varying nature of antecedents to smoking lapses for

the treatment of addiction. Ecological momentary assessment (EMA)

designs have long considered the time-varying nature of certain ante-

cedents of smoking lapses, intensively measuring hypothesized ante-

cedents to lapses many times a day for many days. Despite the rich

temporal detail available through EMA, we note that the cadence of

measurement in the present study (5-min increments) was much finer

than what is typical for an EMA study. These findings encourage us to

consider the timescales over which cognitive control and other lapse-

related processes may be fluctuating in situ and the extent to which

typical sampling rates are sufficient to provide insight into proposed

antecedents to lapses.

The study findings should be interpreted in the context of study

strengths and limitations. First, there is a risk that findings could fail to

replicate in future work due to the small number of participants and

the relatively limited nature of the screening for potentially

confounding factors (e.g., psychiatric diagnosis and substance use).

Regarding sample size, however, we note that a strength of the inten-

sive repeated measures design is that findings are based on 71 imaging

runs despite a sample size of 17 individuals. Data were collected

under minimal task demands (i.e., during resting state), building on

work indicating the ability to extract functional connectivity indices

relevant for understanding cognitive control from rest.30,31 Yet, lapse

episodes in ecologically valid contexts are often provoked by both

internal states (e.g., negative affect) and external stimuli (e.g., smoking

cues) that were not incorporated into the study design. For example,

in behavioral analogs of the current paradigm, participants sit in front

of cigarettes while they decide whether to forgo smoking in order to

earn monetary reward or to forgo the additional monetary reward in

order to smoke. Although having cigarettes present would be techni-

cally challenging (but not impossible50; to achieve in the neuroimaging

environment), there is a substantial body of fMRI drug cue-reactivity

work that could provide satisfactory analogs. We additionally note

that the minimal demands associated with this version of the lapse

task provide a baseline against which additional manipulations of

interest may be added (e.g., stress and alcohol) in the future, as has

been done in behavioral work.17,19

5 | CONCLUSIONS

In summary, default mode and frontoparietal system segregation was

associated with a reduced risk of lapsing during a laboratory smoking

lapse task. Results lend support to the hypothesis that large-scale

functional brain systems associated with cognitive control are

implicated in smoking lapse behavior and point to the importance of

cognitive control as a mechanism underlying smoking relapse.
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