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SI NY Times Article Sample

We selected 80 articles from the full set of 760 articles analyzed in
ref. 11 with the goal of maximizing comparability in topic and
length. Specifically, we conducted a keyword search of the full set
of 760 articles using the following terms: exercise, fitness, physical
activity, running, swimming, skiing, soccer, walking, food (ex-
cluding “Food and Drug Administration”), eating, nutrition,
nutrient, diet, vitamin, calcium, carbohydrates, gluten, caffeine,
cholesterol, obesity, and weight. The search retrieved 143 arti-
cles. A closer examination revealed that four articles were ir-
relevant, and these articles were removed. Of the remaining 139
articles, the 80 that were most similar in length were chosen.

SI Scanning Parameters

We captured neural activity during two runs of the article task
(500 volumes in each run in study 1 and 311 volumes in each run in
study 2) using a T2*-weighted image sequence [repetition time
(TR) = 1.5 s, echo time (TE) = 25 ms, flip angle = 70°, —30° tilt
relative to the anterior commissure—posterior commissure (AC—
PC) line, 54 slices at the Magnetom Tim Trio scanner, 52 slices
at the Prisma scanner, field of view (FOV) = 200 mm, slice
thickness = 3 mm, multiband acceleration factor = 2, voxel size =
3 x 3 x 3 mm)]. High-resolution T1-weighted anatomical images
were collected using a magnetization-prepared rapid gradient-
echo (MPRAGE) sequence [inversion time (TT) = 1,110 ms, 160
axial slices, voxel size = 0.9 x 0.9 X 1 mm]. Finally, we collected
an in-plane, structural, T2-weighted image (slice thickness = 1 mm,
176 axial slices, voxel size = 1 X 1 x 1 mm) to implement a two-
stage coregistration procedure between functional and anatomical
images.

S| Robustness Checks

To test the robustness of our main results reported in Fig. 1, we
estimated models using unranked variables. These analyses
produced results similar to those presented in the main text and
supported identical conclusions (Fig. S2 and Table S3). Further,
models excluding the insignificant direct effects of the two ex-
ogenous variables on virality shown in Fig. 1 were estimated to
obtain model fit statistics. Both models revealed satisfactory
model fit for the hypothesized structural model, considering its
small degrees of freedom (df) and small sample size (66): ¥ (2) =
2.36, P = 0.31, comparative fit index (CFI) = 0.997, residual mean
square error of approximation (RMSEA) = 0.05, 90% CI (0.00,
0.23) for study 1; y* (2) = 3.26, P = 0.20, CFI = 0.986, RMSEA =
0.09, 90% CI (0.00, 0.26) for study 2. Additional analyses revealed
the model fit for the hypothesized path structure was superior to
that of alternative structural models (Table S4), providing addi-
tional confidence to our proposal that valuation, taking inputs
from self and social considerations, serves as a final common
pathway.

SI Study 1 Whole-Brain Analysis

To test the specificity of our results to our theory-driven ROIs, we
conducted exploratory whole-brain analyses. We first created
first-level models for each participant that included a separate
boxcar function for activity across all trials within a certain
condition (content, reading, broadcasting, narrowcasting) for the
reading screen and the rating screen of the article task, re-
spectively (eight regressors). An additional regressor represented
the boxcar function representing the reading screen during
reading trials modified by a mean-centered parametric modulator
of population-level virality ranks of each article. Population-level
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virality ranks were derived by ranking all articles presented within
the reading condition by their population-level retransmission
counts for each participant (range, 1-20). The model also in-
cluded a boxcar function for activity across all trials within the
cue screen and six nuisance regressors to control for motion.
Finally, to ensure that only first exposures were modeled in the
main regressor of interest, one regressor of no interest was en-
tered to account for trials in which one participant was acci-
dentally presented with an article for a second time. Second, at
the group level, neural activity was pooled for all participants to
examine the main contrasts of interest: activity during the
reading screen in reading trials modulated by population-level
retransmission ranks compared with implicit baseline.

To balance the risks of false positives and false negatives, we
conducted two different kinds of correction for multiple com-
parisons to derive whole-brain maps and tables of voxels in which
neural activity scales with population-level virality (Fig. S3 and
Table S5). The first whole-brain map was thresholded at P <
0.005 and K >320, where K is the number of voxels per cluster, to
produce a threshold of P < 0.05, corrected using 3dClustSim
simulation (version AFNI_16.2.02). Although the type 2 error
rate can be expected to be lower for this method of analysis,
prior work has shown that cluster correction tends to over-
estimate the number of significant voxels and thus increases the
type 1 error rate (67). Consequently, we also present the results
of a more stringent whole-brain correction that controls the
number of false positives more efficiently. Specifically, we used
nonparametric permutation testing (5,000 iterations) and false-
discovery rate (FDR) correction for a voxelwise P-threshold of
P <0.05 and K >10 as implemented in the SnPM13 toolbox (68).
(Study 1 results for multiple comparisons correction using non-
parametric permutation testing corrected at FDR P < 0.05 vary
across individual runs of the 5,000 permutations protocol imple-
mented here, because of random elements in this analysis tech-
nique. Specifically, although several runs produced maps similar to
the map printed in Fig. S3, these results border on P < 0.05. All
runs of the permutation protocol for study 1 produced maps that
looked very similar to the one printed here at P < 0.06 or P < 0.07.
Study 2 results are highly robust across several runs of the per-
mutation protocol, P < 0.05, FDR corrected.)

SI Study 2 Whole-Brain Analysis

To conduct a parallel whole-brain analysis for study 2 partici-
pants, we first created first-level models for each participant that
included a separate boxcar function for activity across all trials
within a certain condition (abstract, narrowcasting, broadcasting)
for the reading screen (three regressors) of the article task.
Separate regressors for rating screens were further derived
depending on the condition presented on the reading screen (six
regressors in total). Crucially, an additional regressor specified
the boxcar function representing the reading screen during ab-
stract trials modified by a mean-centered parametric modulator
of population-level virality ranks of each article. As for study 1,
virality ranks were derived by ranking articles shown within the
abstract condition by their population-level retransmission counts
for each participant (range, 1-14). The model also included six
nuisance regressors to control for motion. Second, at the group
level, neural activity during the main task was pooled for all
participants to examine the main contrasts of interest: activity
during the reading screen in abstract trials modulated by pop-
ulation-level virality ranks compared with the baseline resting
state. See SI Text, Fig. S3, and Table S4 for details and results.
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In parallel to study 1 analyses, whole-brain maps were thresh-
olded via 3dClustSim simulation at P < 0.005 and K >296 (version
AFNI_16.2.02) and nonparametric permutation testing (5,000 it-
erations) and FDR correction for a voxelwise P-threshold of P <
0.05 and K >10 as implemented in the SnPM13 toolbox (68).
Results are reported in Fig. S3 and Table S5.

SI Analysis of Other Article Task Conditions

In the main text, we focus on neural activity extracted from
reading trials in the study 1 article task (Fig. 1) because the
reading condition most closely represents real-world experiences
of NYTimes readers who are unlikely to visit the website to find
an article to share with somebody. Instead, readers are more likely
to browse abstracts and consider reading various articles until one
article motivates them to share it with somebody else.

Nonetheless, an additional question to consider is the extent to
which task instructions affect the relationship between neural
activity during article exposure and population-level sharing.
Therefore we examined the relationship between value-related
neural activity in our value ROI in response to an article’s headline
and abstract and population-level article retransmission data, fo-
cusing separately on narrowcasting trials in which participants
were primed before each trial via a cue screen to consider sharing
articles with one Facebook friend and broadcasting trials in which
participants were primed to consider sharing the article on their
Facebook wall. Note that this analysis is not possible for study 2
data, because the other two conditions, not analyzed in the main
text, are not comparable to those in study 1 and did not include
the presentation of original article abstracts.

Results show that value-related neural activity in response to
articles shown in a sharing condition is marginally related to
population-level virality in the case of narrowcasting trials [r =
0.184, P = 0.10] and is not significantly related to population-
level virality in the case of broadcasting trials [r = 0.133, P =
0.24]. Individual-level data from study 1 suggest that explicit
instructions to share (i.e., the two sharing conditions) increase
the overall level of sharing-relevant brain activity compared with
instructions to consider reading the full text of an article (i.e., the
reading condition analyzed here; ref. 23). However, we also
found that these explicit instructions reduce the variance in
value-related activity, which is larger for reading trials (s* = 5.10)
than for narrowcasting (s* = 4.18) and broadcasting (s* = 3.24)
trials. This ordering of conditions according to variance in in-
formation-sharing value corresponds to the condition ordering in
terms of the strength of the relationship between value-related
activity and population-level virality. If this interpretation is
correct, one potential implication could be that sharers are likely
to share articles based on “gut” decisions, which are better
represented by the reading trials, which did not specifically give
participants the goal of sharing in each trial, than by longer
elaboration, which is better represented by sharing trials.

SI Article Characteristics

In a content-focused investigation of 760 NYTimes health news
articles that included the 80 articles used here, Kim (11) char-
acterized the article headlines and abstracts by analyzing human
(i.e., the presence of efficacy information or the mention of diseases
or bad health conditions) and computerized (expressed positivity:
the difference between the number of positive and negative words;
expressed evocativeness/arousal: the sum of positive and negative
words) content and with the help of lay human raters (perceived
usefulness, induced positivity, perceived controversiality, induced
evocativeness/arousal, and perceived novelty). Here we explore the
relationship between these content characteristics and concepts
within our value-based virality framework as well as population-
level virality.
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SI Analysis of Article Characteristics

Prior work has shown that content characteristics can impact
virality (2, 5), and this argument has been made particularly
effectively in the case of news articles (11, 38). Consequently, we
explored the role of content characteristics in value-based virality.
Specifically, content characteristics might be involved in three
different ways. (i) Article characteristics might affect virality
directly and independently of variables included in the value-
based virality model. If so, it would be of interest whether neural
data explain the variance in population-level sharing over and
above that explained by article characteristics. (ii) Article char-
acteristics might affect information-sharing value directly or via
some other mechanism not currently included in the value-based
virality model. (iii) Article characteristics might be antecedents
of thoughts regarding the self-related and social outcomes of
sharing.

To explore these possibilities, we first checked whether the
predictions made by value-based virality (Fig. 1) hold even when
controlling for article characteristics. For this purpose, we esti-
mated models identical to the one in Fig. 1 but for the sake of
parsimony excluded the insignificant direct effects of self-related
and social processing on virality. Each model additionally included
a direct effect of one article characteristic on population-level
virality. Paralleling other analyses presented in this article, all
variables were rank-ordered. In both studies, the effects presented
in Fig. 1 were robust when controlling for any of the nine article
characteristics considered here. In fact, the only article charac-
teristic that showed a significant effect on population-level virality
in these models was the perceived usefulness of an article
[B (unstandardized estimate of this parameter) = 0.202, SE = 0.101,
P = 0.04] in study 1, but this effect did not replicate in study 2.

Second, we examined the relationships between each of the
nine content characteristics available to us and average neural
activity in regions associated with self-related and social processing
in response to each article using ¢ tests and Pearson correlation
where appropriate. Paralleling other analyses presented in this
article, all variables were rank-ordered.

In study 1, we found a positive relationship between induced
positivity in an article and neural activity in the self-related
processing ROI [r = 0.231; P = 0.04]. In addition, articles that
mentioned diseases or negative health issues (mean, 9.74) were
associated with less self-related processing than articles that did
not [mean, 10.70; 7(78) = 2.24; P = 0.03] in study 1. However,
these effects did not replicate in study 2.

Finally, we explored direct effects of article characteristics on
information-sharing value (i.e., average neural activity in our
value-related processing ROI) using analytical strategies identical
to those explained above. Value-related neural activity was
positively related to the extent to which articles induced positivity
in human raters [r = 0.309; P = 0.005], and articles that men-
tioned diseases or bad health conditions (mean, 9.50) engaged
less value-related activity than articles that did not [mean, 10.96;
T(78) = 3.04; P = 0.003]. However, these effects did not replicate
in study 2.

In sum, our results hold, even when controlling for the effects of
various article characteristics on virality, suggesting that neural
activity contributes information over and above what can be
learned from variables commonly used in the literature on virality
(11, 38). In contrast to prior work, most article characteristics
did not predict population-level sharing. This dissonance with
existing studies might be the result of methodological differences
among studies. Most notably, previous reports of effects between
article characteristics and population-level sharing showed rela-
tively small effect sizes that were identified only in very large
samples (e.g., n > 6,000 in ref. 38 and n = 760 in ref. 11). Because
of time restrictions in the fMRI scan, we were not able to repli-
cate these article sample sizes. Nonetheless, our ability to predict
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virality from neural variables even in this small sample of articles
speaks to the strength and utility of fMRI.

In addition, we identified selected relationships between in-
dividual article characteristics and the extent to which articles
engaged neural activity associated with self-related, social, or
value-related cognition in study 1. Although these relationships
generally did not replicate in study 2, these findings might suggest
that content characteristics could be promising candidates in the
search for antecedents of the psychological processes that affect
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sharing. The lack of robustness of these effects might be due to the
small sample size and homogeneity of articles. In addition, it is
possible that sharing-relevant cognitions are more sensitive to
combinations of article characteristics (e.g., the emotional tone in
combination with the topic) than to isolated characteristics. However,
the specific combination of article characteristics that enhances ex-
pectations of positive social or self-related outcomes of sharing might
be highly context dependent. An exploration of the large number of
potential interaction terms is beyond the scope of this investigation.
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fMRI tasks. (A) Reading trial of the article task (study 1). (B) Abstract trial of the article task (study 2). The trial modeled in main analyses is marked in red.

Study 1: R?=0.78
Study 2: R?=0.78

Study 1: B=0.32, SE=0.08 ***
Study 2: B=0.44, SE=0.11 ***

Study 1: B=0.76, SE=0.09 ***
Study 2: B=0.50, SE=0.11 ***

Study 1: B=2.09, SE=0.78 **
Study 2: B=1.81, SE=0.68 **

Social
Cognition
Study 1: n.s. Virality
Study 2:
Self-Related |/ . Study 1: n.s. Study 1: R2= 0.14
Processing Study 2: n.s. Study 2: R2=0.11

Independent Variable

Study 1 Indirect Effects

Study 2 Indirect Effects

Social Cognition

Self-Related Processing

B=0.67, Cl [0.24 - 1.20]
B=1.59,Cl[0.62 - 2.68]

B=0.80, CI [0.26 — 1.79]
B=0.90, CI [0.25 — 1.86]

Fig. S2. Value-based virality path model including unranked variables. The path diagram shows maximum likelihood estimates (unstandardized coefficients).
The table presents indirect effect coefficients and bias-corrected, bootstrapped 95% Cls (1,000 replications). Population-level virality was log-transformed
because of its positively skewed distribution. n = 80 in study 1 and 76 in study 2; *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not significant.
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Fig. 3. Whole-brain analyses of regions associated with each article’s rank of population-level sharing counts in study 1 and study 2. Whole-brain maps were
thresholded using (A) a nonparametric permutation analysis corrected at FDR-corrected P < 0.05, K >10 and (B) a cluster-based approach thresholded at P <
0.005 uncorrected and K >320 in study 1 and K >296 in study 2, respectively where K is the number of vowels per cluster on a 3dClustSim simulation together

corresponding to P < 0.05 corrected.

Study 1: R?=0.11
Study 2: R?=0.14

A Study 1: B=0.34, SE=0.11**
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B Study 1: B=0.22, SE=0.10*
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Study 1: B=0.25, SE=0.09 **
Study 2: B=0.35, SE=0.12 **
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Study 2: B=4.09, SE=2.14 *

Study 2: B=0.35, SE=0.11 **

Virality

Study 1: R?2=0.19
Study 2: R?=0.19

Fig. S4. Effects of self-reported intention. (A) Model using intention ratings to predict population-level virality. (B) Model using both intention ratings and
value-based virality to predict virality. All variables are rank-ordered; *P < 0.05, **P < 0.01, ***P < 0.001, *P = 0.056, n.s., not significant.
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Table S1. ROIs in study 1 and

study 2

Center of mass

ROI Volume, cm? X y z
Self-related processing
Ventromedial prefrontal cortex 0.23 -4.26 56.6 -3.92
Precuneus/posterior cingulate cortex 1.93 -6.68 -55 28.2
Valuation
Ventral striatum 4 -3 10 -4
Ventromedial prefrontal cortex 3.59 1 46 -7
Social processing
Middle-medial prefrontal cortex 2.4 1.91 55 11.6
Dorsomedial prefrontal cortex 2.61 -0.13 53.7 29.3
Right temporoparietal junction 3.0 54.1 -52.6 23.1
Left temporoparietal junction 3.0 -51.7 -58.3 24.8
Right superior temporal lobe 3.1 54.4 -8.45 -17.3

The x, y, and z coordinates correspond to the MNI standard brain. All neural systems and subclusters are
defined based on prior studies as described in Methods.

Table S2. Correlation matrices underlying the path models in Fig. 1 (variables 1-4) and Fig. $4 (variables 1-5)

Variable 1 2 3 4
Study 1, n =80

1. Self-related processing ROI 1

2. Social processing ROI 0.705*** 1

3. Valuation ROI 0.838*** 0.702%** 1

4. Population-level virality 0.240* 0.253* 0.387%** 1

5. Self-reported intentions 0.125 0.263* 0.285* 0.337**
Study 2, n =76

1. Self-related processing ROI 1

2. Social processing ROI 0.822%** 1

3. Valuation ROI 0.814*** 0.770%** 1

4. Population-level virality 0.094 0.182 0.237* 1

5. Self-reported intentions 0.146 0.164 0.191 0.372%**

Asterisks indicate statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.

Table S3. Correlation matrices underlying the path model in Fig. S2 that includes unranked variables

Variable 1 2 3 4
Study 1, n =80

1. Self-related processing ROI 1

2. Social processing ROI 0.717%%* 1

3. Valuation ROI 0.856*** 0.758%** 1

4. Population-level virality 0.236* 0.235* 0.352** 1
Study 2, n =76

1. Self-related processing ROI 1

2. Social processing ROI 0.868*** 1

3. Valuation ROI 0.859%** 0.851%** 1

4. Population-level virality 0.107 0.163 0.256* 1

Population-level virality showed a positively skewed distribution and thus was log-transformed. Asterisks indicate
statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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Table S4. Model fit comparison for alternative path structures

Model Xz (df), P CFI RMSEA (90% ClI) AIC BIC
Study 1, n =80
(A) Valuation mediates 2.36 (2), 0.31 0.997 0.05 (0.00-0.23) 1,593.80 1,605.71
(B) Self-related processing mediates 10.63 (2), 0.01 0.925 0.23 (0.11-0.38) 1,602.08 1,613.99
(C) Social cognition mediates 10.08 (2), 0.01 0.888 0.23 (0.10-0.37) 1,601.53 1,613.44
Study 2, n =76
(A) Valuation mediates 3.26 (2), 0.20 0.986 0.09 (0.00-0.26) 1,457.07 1,468.72
(B) Self-related processing mediates 6.98 (2), 0.03 0.955 0.18 (0.05-0.34) 1,460.79 1,472.44
(C) Social cognition mediates 5.09 (2), 0.08 0.968 0.14 (0.00-0.30) 1,458.90 1,470.56

(A) represents a model resembling the path model in Fig.1 excluding the two insignificant effects. (B) rep-
resents a version of model A in which the roles of “valuation” and “self-related processing” are switched. (C)
represents a version of model A in which the roles of “valuation” and “social cognition” are switched. AIC,
Akaike’s information criterion; BIC, Bayesian information criterion.

Table S5. Whole-brain tables: Clusters significantly associated with population-level virality ranks of the NYTimes articles shown in
each trial during reading screen periods (study 1) or abstract trials (study 2)

Cluster Nonparametric

Region R/L X y z T K T K
Study 1

Medial prefrontal cortex* L -3 59 1 4.52 1495 4.52 920

Anterior cingulate cortex L -3 47 10 4.27 4.28

Caudate’ R 3 8 -5 2.97

Dorsomedial prefrontal cortex L -12 38 31 4.08 4.09 14

Dorsomedial prefrontal cortex” R 6 65 25 3.22

Dorsolateral prefrontal cortex/superior frontal gyrus L =27 53 31 3.28 3.28 1

Ventromedial prefrontal cortex L -3 38 -1 4.23 4.24 1

Lateral orbital frontal cortex L =21 62 10 4.08 4.09 48

Mid cingulate cortex* L -6 -16 34 4.56 549 4.57 129

Mid cingulate cortex M 0 =22 40 4.33 4.33

Precuneus’ L -18 -49 31 4.09

Cingulate® R 12 -28 28 3.84

Thalamus L -4 -28 7 — 3.05 32
Study 2

Medial prefrontal cortex R 15 50 1 4.76 2,698 4.77 905

Medial prefrontal cortex L -15 50 -2 4.42 4.43

Ventromedial prefrontal cortex R 3 38 -8 3.67 3.67

Anterior cingulate cortex* L -3 32 10 5.33 5.34

Caudate R 3 8 4 4.73 4.74

Putamen R 15 8 -8 3.88 3.89

Caudate L -12 20 1 4.59 4.61

Caudate R 12 17 1 3.99 4.01

Posterior cingulate cortex* R 3 -40 19 4.48 506 4.50 126

Posterior cingulate cortex R 6 -22 31 3.99 4.00

Posterior cingulate cortex L -9 —-43 19 3.70 3.72

Clusters significantly associated with population-level virality ranks of the NYTimes articles shown in each trial during reading screen periods of reading
(study 1) or abstract trials (study 2). The x, y, and z coordinates correspond to the MNI standard brain. No suprathreshold clusters were observed that were
negatively associated with the parametric modulator. Thresholding: For each study, voxels significant under cluster correction and voxels significant under
nonparametric correction are shown. Cluster correction thresholding was performed based on 3dClustSim simulation at P < 0.005 uncorrected and K > 320 in
study 1 and K > 296 in study 2; nonparametric thresholding was performed through nonparametric permutation testing and FDR P < 0.05, K >10. Separate
clusters in the cluster-corrected map are divided by spaces between rows. df = 1, 38; voxel size = 3 x 3 x 3 mm. K, number of voxels per cluster. L, left; M,
medial; R, right.

*Peak voxel within cluster.
"Peaks that are present only under cluster correction.
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