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Supplementary Methods 

fMRI data acquisition and analysis 

 Participants were situated in the scanner, where foam padding was placed around their 

heads to reduce motion.  Stimuli were presented on LCD goggles, and responses were recorded 

on a magnet-safe joystick placed in the right hand (Resonance Technology, Northridge, CA, 

USA).  Participants responded to each go trial by pushing or pulling a lever then clicking a 

button at the top of the lever.  Response time was computed as the latency between stimulus 

onset and the button click, errors were determined according to trial type, and distance and 

velocity were calculated based on the position of the lever at the time of the button click. 

 High-resolution structural T2-weighted echo-planar images (spin-echo; TR = 5000 ms; 

TE = 34 ms; matrix size 128 x 128; 34 sagittal slices; FOV = 192mm; 4 mm thick) were acquired 

coplanar with the functional scans.  Four functional scans lasting 6:30, 5:46, 5:46 and 5:00 were 

acquired during the task (echo-planar T2*-weighted gradient-echo, TR = 2000 ms, TE = 30 ms, 

flip angle = 90°, matrix size 64 x 64, 34 axial slices, FOV = 192 mm; 4 mm thick), totaling 692 

functional volumes. 

 The imaging data were analyzed using a combination of FSL tools (FMRIB Software 

Library; Oxford University, Oxford, UK) and SPM8 (Wellcome Department of Cognitive 

Neurology, Institute for Neurology, London, UK).  The preprocessing stream for the images was 

as follows.  All images were brain-extracted using BET (FSL’s Brain Extraction Tool) and 

realigned within runs using MCFLIRT (FSL’s Motion Correction using FMRIB's Linear Image 

Registration Tool), then checked for residual motion and noise spikes using a custom automated 

diagnostic tool (thresholded at 2mm motion or 2% global signal change from one image to the 

next).  In SPM8, all functional and anatomical images were reoriented to set the origin to the 
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anterior commissure and the horizontal (y) axis parallel to the AC-PC line.  Also in SPM8, 

functional images were corrected for slice acquisition timing differences within volumes, 

realigned within and between runs to correct for residual head motion, and coregistered to the 

matched-bandwidth structural scan using a 6-parameter rigid body transformation. The 

coregistered structural scan was then normalized into the Montreal Neurological Institute (MNI) 

standard stereotactic space and the resulting parameters were applied to all functional images.  

Finally, the normalized functional images were smoothed using an 8 mm full width at half 

maximum Gaussian kernel.   

 One run from each of two participants was removed due to motion.  Data from three 

other participants contained motion spikes that were statistically removed using regressors 

corresponding to the affected scans. 

 The design was modeled as an event-related within-subjects one-way ANOVA with 

response inhibition as a factor with two levels: go and no-go. An implicit baseline condition was 

comprised of the twelve-second fixation periods that followed each block.  Each trial was 

modeled as an event with 1-second duration and convolved with the canonical hemodynamic 

response. Temporal autocorrelations in the functional data were addressed using a first-order 

auto-regressive error structure.  

 We used a Monte Carlo simulation (AlphaSim; distributed as part of the AFNI Software 

Package, Medical College of Wisconsin, Milwaukee, WI) to determine that the minimum cluster 

size necessary to maintain a false detection rate of 5% for a whole-brain search of the [no-go > 

go] contrast was 20 3x3x3mm voxels combined with a voxel-wise threshold of .001. All 

functional imaging results are reported in MNI coordinates. 

Experience sampling 
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 Participants could silence or disable their phones at their discretion.  In the event that they 

were unable to respond to a prompt before the arrival of the subsequent prompt they were 

instructed to respond only to the most recent prompt.  In other words, participants had roughly 

two hours to respond to each prompt.  Participants were sent a reminder text message or received 

a phone call if their response rate dropped below 50% for a 24-hour period. 

 The text message prompts were sent and received through an automated web-based 

service (RedOxygen Pty. Ltd., Brisbane, Queensland, Australia).  Records including the 

timestamp and content of each message that was sent and received were downloaded from the 

RedOxygen website. 

 The Freedom From Smoking cessation program was ongoing from two weeks before the 

quit date until six weeks following the quit date.  Thus, all participants were enrolled in the 

program for the entire duration of the experience sampling phase of the study. 

Time-series data often violates the assumption of sphericity among the dependent 

measures.  To test for this, we used the Hierarchical Multivariate Linear Modeling module of 

HLM6 to run a nested set of models.  The most unrestricted model allowed for all separate 

variances and covariances within the 8x8 within-day variance-covariance matrix, and more 

restrictive variance structures such as identical variances but unique covariances and first-order 

auto-regressive were nested within that model.  Deviance change tests suggested that sphericity 

was met within-days.  Nonetheless, we used robust estimates of standard errors with the 

assumption of over-dispersion to conservatively guard against violations of normality and 

sphericity (Zeger, Liang, & Albert, 1988). 

Integration of fMRI and experience sampling data 
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 To assess which inhibition-related neural activations had prospective predictive value of 

smoking cessation outcomes, we identified voxels that correlated with overall smoking change 

from baseline to endpoint within a functional ROI based on significant activations in the no-go > 

go contrast.  This is a relatively conservative approach because these voxels will have reduced 

variance due to their restricted range (Lieberman, Berkman, & Wager, 2009).  False detection 

rate of .05 was achieved on this analysis using a combined voxel-wise threshold of .01 for each 

of the conjoined analyses together with a cluster-extent threshold of 20 voxels (Kampe, Frith, & 

Frith, 2003; Ochsner, Hughes, Robertson, Cooper, & Gabrieli, 2009).  To further bolster the 

predictive power by testing their generalizability to new data, results from this analysis were 

entered into a leave-one-out cross-validation analysis (Falk, Berkman, Mann, Harrison, & 

Lieberman, 2010; Stone, 1974).  This analysis identified regions in which activation during 

response inhibition at baseline was predictive of subsequent global success at smoking cessation 

across a four-week period. 

Supplementary Results 

Smoking change from baseline to endpoint 

 Within days, there was a positive relationship between craving at one time point and 

smoking at the next when craving was entered alone into the model (i.e. without neural 

activations; log-expectation γ = .19, SE = .08, t(476) = 2.14, p < .05).  Individuals in the upper 

tertile of this everyday craving-smoking relationship (i.e. those with a strong positive 

relationship) reduced smoking significantly less (M= 8.50 cigarette reduction/day) than those in 

the lower tertile (i.e. those with a weak or no relationship between craving and smoking; 

M=18.44 cigarette reduction/day, t24=2.22, p<.05). 

Predicting everyday response inhibition from neuroimaging data 
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To explore the differential contributions of the caudate and putamen within the basal 

ganglia, we ran the analysis separately for left and right ROIs of each of those regions based on 

the AAL toolbox (Tzourio-Mazoyer, et al., 2002).  Activation in the left caudate (log-γ = -.20, 

p<.04) and the left and right putamen (log-γs = -.17, -.21, ps<.05) moderated the link between 

craving and smoking.  The right caudate slope (log-γ = -.16) was not significantly different from 

the left caudate slope, but did not meet our significance threshold (p<.14).  Together, activation 

in the bilateral basal ganglia during response inhibition significantly moderated the relationship 

between craving and smoking (see Table 2). 

We ran another set of models to test whether the moderation of the craving-smoking link 

by activation in the ROIs was higher at greater levels of craving compared to lower levels of 

craving.  To do this, we created a variable that coded for whether cravings were high (3 or 4 out 

of 4) or low (0, 1 or 2 out of 4), then generated the interaction term between mean-centered 

versions of this variable and the reports of prior craving.  Conceptually, the slope between this 

variable and smoking tests whether high levels of craving were more related to smoking than low 

levels of craving.  We then tested whether this interaction variable was significantly moderated 

by activation in our ROIs, conceptually testing whether the moderation of the craving-smoking 

link by brain activation was moderated by whether cravings were high or low.  The results of 

these tests support the notion that the moderation of the craving-smoking link by neural 

activation was higher at relatively higher levels of craving: the moderation was significantly 

greater at high levels of craving (compared to low levels) for all six ROIs (all γs > .2, all p<.05). 

Predicting global smoking change from neuroimaging data 

 We used a functional localizer to identify voxels associated with response inhibition (i.e. 

[no-go > go]), then searched within these for voxels that were also associated with change in 
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exhaled carbon monoxide.  The only regions that survived this analysis were two clusters in the 

right basal ganglia, one cluster in the fusiform gyrus, and one cluster on the occipital pole (Table 

S1; Figure S1).  A leave-one-out cross-validation procedure was used to extend the 

generalizability of this result to new samples.  In this procedure, each participant’s change in CO 

from baseline to endpoint was predicted from his or her right basal ganglia activation in [no-go > 

go] based on a linear statistical model from all other participants.  Across iterations, there was a 

significant positive correlation between predicted and actual CO change, suggesting predictive 

validity in the neuroimaging data (cross-validated r = .40, R2 = 16%, p < .05; Figure S2). 

Robustness to missing data 

 It seems possible that smokers attempting to quit might under-report smoking lapses, thus 

it is important to check that this potential systematic bias in the missing data (i.e missing not-at-

random) does not affect the results.  To check the robustness of our data, we generated simulated 

data under varying degrees of the assumption that participants systematically smoked more when 

they missed a smoking report.  We simulated the data by computing the mean and standard 

deviation of daily smoking per participant and replaced instances of missing data with these 

imputed data.  We note that this is a highly conservative test of the possibility of under-reporting 

of smoking because it assumes that each instance of missing data was counted as a lapse.  Even 

if attempting quitters tended to under-report lapses, it still is unlikely that every missed report 

corresponded to a lapse. 

We re-computed the parameter estimates for each of the key ROIs (IFG, preSMA, and 

basal ganglia) assuming that participants did not smoke more during missed responses compared 

to completed responses (mean), participants smoked slightly more during missed responses 

compared to completed responses (+1 SD), and participants smoked significantly more during 
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missed responses (+2 SD).  In every case, the parameter estimates are slightly attenuated though 

still significant when missing data are imputed with mean, moderate, and high smoking.  None of 

the parameter estimates fall below our significance threshold of p<.05, and none change 

significantly from the value reported in Table 2. 

Also, the hypothesis that the parameter estimates are robust to this violation is further 

supported by the fact that the mean craving at time points immediately prior to completed 

responses (M=1.73) is not significantly different from the mean craving at time points 

immediately prior to missed responses (M=1.72, p>.7).  Both of these analyses demonstrate that 

missing data did not impact the slope between craving and subsequent smoking. 

Supplementary Discussion 

 Of our three ROIs commonly involved in response inhibition, only basal ganglia 

activation predicted long-term success in smoking cessation, but all three predicted successful 

outcomes of the smaller everyday battles between craving and self-control.  And the outcomes of 

these battles—the battles to prevent craving becoming smoking—in turn related to the outcome 

of the war in terms of overall daily cigarette reduction.  The role of rIFG and SMA in these 

struggles would have been lost if we had only examined the link between neural activation and 

overall success. 
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Figure S1.  Regions active during the contrast of no-go > go that also correlated with global 

smoking change (CO from baseline to endpoint).  These included the basal ganglia (top; peak 

MNI: 30 5 4), fusiform gyrus (bottom; -39 -64 -11), and occipital pole (not shown).  All 

activations are FDR corrected at .05. 
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Figure S2.  Correlation between actual exhaled carbon monoxide change (from baseline to 

endpoint) and predictions of change based on neural activation.  Iterative leave-one-out cross-

validated r = .40, p < .04. 

 

 

 

 



  

Table S1 

Regions active during [no-go > go] that correlated with change in 

exhaled CO 

       

Effect Region x y z 

Cluster 

size t-val 

No-go > go & Basal ganglia 30 5 4 86 5.02 

Positive correlation  30 -16 -2 53 5.78 

 Fusiform gyrus -39 -64 -11 20 6.64 

 Occipital pole -24 -94 10 20 7.57 

              

No-go > go & None      

Negative correlation       

       

       

              

       

Note.  N=27.  All regions FDR corrected at .05. 
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