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Activity in the brain’s valuation 
and mentalizing networks 
is associated with propagation 
of online recommendations
Elisa C. Baek1,8*, Matthew Brook O’Donnell1, Christin Scholz2, Rui Pei1, Javier O. Garcia3,4, 
Jean M. Vettel3,4,5 & Emily B. Falk1,6,7*

Word of mouth recommendations influence a wide range of choices and behaviors. What takes place in 
the mind of recommendation receivers that determines whether they will be successfully influenced? 
Prior work suggests that brain systems implicated in assessing the value of stimuli (i.e., subjective 
valuation) and understanding others’ mental states (i.e., mentalizing) play key roles. The current study 
used neuroimaging and natural language classifiers to extend these findings in a naturalistic context 
and tested the extent to which the two systems work together or independently in responding to 
social influence. First, we show that in response to text-based social media recommendations, activity 
in both the brain’s valuation system and mentalizing system was associated with greater likelihood 
of opinion change. Second, participants were more likely to update their opinions in response to 
negative, compared to positive, recommendations, with activity in the mentalizing system scaling 
with the negativity of the recommendations. Third, decreased functional connectivity between 
valuation and mentalizing systems was associated with opinion change. Results highlight the role of 
brain regions involved in mentalizing and positive valuation in recommendation propagation, and 
further show that mentalizing may be particularly key in processing negative recommendations, 
whereas the valuation system is relevant in evaluating both positive and negative recommendations.

Word of mouth recommendations are a powerful form of  communication1, influencing consumer  decisions2, 
political  mobilization3, and the subjective value of objects and ideas in a wide range of  contexts4–6. What takes 
place in the mind of receivers exposed to recommendations from peers, experts, and even strangers that deter-
mines the likelihood that the communicator’s opinion spreads further? In the current study, we studied recom-
mendations from peers as one source of social influence on  behavior7. Past research has suggested that assessing 
the value of different stimuli (i.e., subjective valuation)5,6,8–10 and understanding others’ mental states (i.e., mental-
izing)9–11 are key processes in adopting and propagating recommendations. These processes are associated with 
specific networks in the brain: (1) the valuation system, which includes ventromedial prefrontal cortex (VMPFC) 
and ventral striatum (VS)12, and (2) the mentalizing system, which includes portions of the medial prefrontal 
cortex (MPFC), particularly subregions in the middle and dorsomedial prefrontal cortex (MMPFC, DMPFC), 
as well as bilateral temporoparietal junction (TPJ), precuneus (PC/PCC), superior temporal sulcus (STS), and 
temporal  poles13,14. We used neuroimaging and natural language classifiers: (1) to test the role of these neural 
systems in updating opinion in response to positive and negative recommendations, (2) to extend past results to 
a more naturalistic context (i.e., responding to real written recommendations with natural language text), and 
(3) to examine a new question about the extent to which these neural systems work together or independently 
to produce recommendation rating change in response to naturalistic recommendations.
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Brain activity in the valuation system predicts successful social influence. Prior neuroimaging 
research has highlighted the involvement of the brain’s valuation system in successful social influence, support-
ing the propagation of ideas between a communicator and a receiver (for reviews  see15,16). Generally, the brain’s 
valuation system, including the ventral striatum (VS) and the ventromedial prefrontal cortex (VMPFC), com-
putes the subjective value of different types of stimuli, including primary (e.g., food) and secondary (e.g., social) 
 rewards12. In the context of social influence on recommendations, the value system is implicated in tracking the 
value of different decision-relevant information over time, including the social rewards of being in alignment 
with a  group8,9, positive valuation of the social recommendation and anticipated rewards of  conforming9–11, and 
one’s internal value of the  stimuli5,6,8.

In the context of online media platforms, people often encounter recommendations that are different from 
their own opinions, which lead them to update and share their own recommendations. In lab situations parallel-
ing this online social context, the valuation signal in the brain tracks the value of peer recommendations, where 
greater activity in the valuation system is associated with receivers of influence conforming to peer recommenda-
tions versus resisting peer  influence10,11. Extant neuroimaging studies whose timing most closely mirrors online 
recommendation contexts (in presenting recommendations and then recording participants’ updated opinions 
immediately), however, have focused primarily on  adolescents10,11. This makes it unclear whether these findings 
are specific to adolescents or more generally true of the process of incorporating peer feedback on recommenda-
tions in real-time. In the current neuroimaging study, we tested this paradigm in a young adult sample. If neural 
signal in the valuation system tracks the value of social recommendations and anticipated rewards of conforming, 
we hypothesized that increased activation in response to either positive or negative recommendations should 
track with the participant subsequently updating their opinion in line with peer recommendations.

Brain activity in the mentalizing system predicts successful information propagation. Prior 
studies of individual differences in recommenders also offer preliminary evidence suggesting the importance of 
the brain’s mentalizing system for the successful propagation of ideas (for a review,  see17). Successful recommend-
ers often show greater neural activity in the mentalizing system compared to less influential  recommenders18–20. 
Furthermore, ideas that people want to share elicit greater activity in the mentalizing  system19,21,22. In paral-
lel, receivers who are more persuadable to update their own recommendations also show greater mentalizing 
 activity10, and increased brain activity in mentalizing regions during social feedback is associated with greater 
likelihood of conforming to peer  opinion11. Greater activity in mentalizing regions is also observed in the pro-
cessing of divergent peer influence, including when a receiver of social influence finds out that he or she is not 
in alignment with peer  opinions9,10. This finding suggests that the mentalizing system may enable the receiver 
to understand the recommender’s intentions or point-of-view9,10. Thus, the tendency to consider other people’s 
mental states may be an important element in updating one’s own initial opinion, and we expect that neural 
activity in the mentalizing system will track the successful spread of recommendations.

Recommendation valence. Our research also examines an open question in the literature about whether 
brain activity tracking social influence is sensitive to the valence of recommendations. Mentalizing may broadly 
aid in understanding others’ viewpoints, and the value system might broadly assess the value of peer recommen-
dations, tracking with opinion change in response to both positive and negative recommendations; alternatively, 
these systems may respond more strongly in situations where people are most likely to assess social consequences 
of their actions, such as in response to negative social  evaluation23–26. Behavioral evidence suggests that negative 
(versus positive) peer recommendations may lead to greater  conformity2,10. This ‘negativity bias’, or the idea that 
people exhibit greater sensitivity to negative information than positive information of equal objective polarity, 
has been observed across diverse  fields27. To this end, we tested whether the valence of peer recommendations 
influences the engagement of the valuation and mentalizing systems during recommendation propagation.

Does brain connectivity between valuation and mentalizing systems predict conformity or 
resistance to peer influence on recommendations? Prior studies of recommendation behavior have 
focused on average neural activation within specific, separate brain regions (e.g., regions within the valuation 
and mentalizing systems), and, as such, do not provide insight about how different brain systems might coordi-
nate to facilitate or suppress receptivity to social influence. Therefore, we extend prior work by also examining 
the interplay between regions of the brain’s valuation and mentalizing systems in recommendation propagation. 
We tested two competing hypotheses. One possibility is that increased coordination between activity in the 
brain’s valuation and mentalizing systems in response to peer recommendations might be associated with greater 
recommendation rating change. If increased value placed on the peers’ opinion leads to greater mentalizing, we 
anticipate that greater connectivity between these systems would be associated with more recommendation-
congruent opinion change. An alternative hypothesis is that increased coordination in activity between the 
brain’s valuation and mentalizing systems in response to peer recommendations might be associated with less 
recommendation-congruent opinion change. If decreased value placed on the peers’ opinion leads to suppres-
sion of mentalizing, we would also anticipate that greater connectivity between these systems could be associated 
with less recommendation-congruent opinion change. This would be consistent with past research on motivated 
 reasoning28. Accordingly, recommendation rating change might be supported by decreased functional connec-
tivity between the brain’s valuation and mentalizing regions. To test these competing hypotheses, we used psy-
chophysiological interaction (PPI)  analysis29 to compare functional connectivity between the brain’s valuation 
and mentalizing regions when participants changed (vs. didn’t change) their recommendations in response to 
peer recommendations. PPI captures the interaction between psychological variables (in the case of this inves-
tigation, whether a participant is persuaded to change their recommendation or not) and brain response (in 
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this case, the correlation between activity in the mentalizing and valuation systems). We use this method to 
determine whether brain responses in mentalizing and valuation systems are more or less correlated when par-
ticipants update, or do not update, their recommendations based on peer feedback.

The current study. Participants performed a modified version of the App Recommendation Task (Cascio 
et al.10; Fig. 1) in which they learned about mobile game apps and then read real text of peer recommendations 
related to the apps while their brain activity was measured using neuroimaging (functional MRI, or fMRI). The 
task simulated real-life situations when people consider others’ recommendations during decisions to consume 
and recommend a product to other people. Before the fMRI scan, participants rated their likelihood to recom-
mend 80 mobile game applications based only on the information from the app developers. Approximately an 
hour later, during the fMRI scan, participants then read peer recommendations that were written by other users 
about the same mobile game applications and were given the opportunity to update their own recommendation 
rating. The valence of the peer recommendations that were shown to participants was scored using a sentiment 
analysis tool (http:// text- proce ssing. com/ api/ senti ment/), where high scores indicated positivity and low scores 
indicated negativity. We calculated ‘recommendation rating change’ as being positive if participants changed 
their own recommendation ratings in the direction of the peer recommendations (i.e., became more positive in 
response to positive reviews or more negative in response to negative reviews).

Our paradigm also allowed us to test the neural and psychological processes that are implicated in the current 
online recommendation context, where people are exposed to peer opinions and then update their own recom-
mendations in real-time. Further, we used written recommendations from a separate group of participants, which 
more closely reflects real-life social influence contexts and a richer, naturalistic measure of social influence. Col-
lectively, our approach allowed us to test the role of the valuation and mentalizing systems in recommendation 
propagation, and how the valence of peer endorsements may modulate such effects. In a novel contribution to 
the field of neuroscience of communication and social influence, we also tested whether functional connectivity 
between the valuation and mentalizing systems is associated with recommendation propagation.

Materials and methods
Participants. Thirty-eight participants (27 females; mean age = 20.9) provided complete data, and four par-
ticipants provided partial data (see Supplementary informationfor exclusions). The study was approved by and 
conducted in accordance with relevant guidelines and regulations by the Institutional Review Board of the Uni-
versity of Pennsylvania, and all participants gave informed consent for the study procedure.

Procedure. Participants completed the first part of a modified version of the App Recommendation  Task10 
before the fMRI scan. They read the title, logo, and description of 80 mobile game applications taken from the 
iTunes App Store and indicated their initial likelihood of recommending (‘initial recommendations’) each game 
app. In the second part of the task, which took place inside the MRI scanner, participants reviewed the same 80 
mobile game apps. For each mobile game app, participants were first shown the title and logo of each game and 
reminded of their initial recommendation rating for 2 s (‘reminder period’). Then, the participants read a short 
recommendation of the game app that they were (truthfully) told was written by their peers (M = 32.4 words, 

Figure 1.  Task Schema. Before the scan, participants saw descriptions of 80 mobile game apps and provided 
initial ratings of their likelihood to recommend each app to others. In the scanner, participants were first 
reminded of their initial recommendation ratings. Then, they read peer recommendations about each of the 80 
mobile game apps. Recommendations ranged in valence, with some being positive and others negative. During 
the final rating period of the scan, participants had the opportunity to update their recommendation ratings 
based on the peer feedback.

http://text-processing.com/api/sentiment/
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SD = 7.2 words) for 11 s (‘review period’). The peer recommendations were written by a different group of par-
ticipants that were similar in demographics to the current study (N = 43, age M = 22.1) as part of a separate study. 
We used text written by a different group of participants to maximize external validity, reflecting real-life online 
recommendation environments. Each participant read recommendations for 80 mobile game apps, each from 
one of two pseudo-randomly assigned peer reviewers (one recommendation per app; 40 total recommendations 
per recommender) (see Supplementary information for more information). After reading each recommenda-
tion, participants had 3 s to provide a final rating of their own likelihood to recommend the game app (‘final 
rating period’). See Fig. 1 for an illustration of the task design.

fMRI image acquisition. Neuroimaging data from participants were obtained using 3 T Siemens scanners. 
For each participant, we acquired three functional runs (500 volumes per run) using T2*-weighted reverse spiral 
sequence (TR = 1500 ms, TE = 25 ms, 54 axial slices, flip angle = 70°, − 30° tilt relative to AC-PC line, FOV = 200 
mm, slice thickness = 3 mm; voxel size = 3.0 × 3.0 × 3.0 mm, order of slice acquisition: interleaved). T1-weighted 
images (MPRAGE; magnetization-prepared rapid-acquisition gradient echo) were recorded (TI = 1110 ms, 160 
slices, FOV = 240 mm, slice thickness = 1 mm, voxel size = 0.9 × 0.9 × 1 mm). In-plane structural T2-weighted 
images were also collected (slice thickness = 1 mm, 176 sagittal slices, voxel size = 1 mm × 1 mm × 1 mm) for use 
in coregistration and normalization.

Sentiment analysis. Each peer recommendation that participants read was scored using a sentiment anal-
ysis API (http:// text- proce ssing. com/ api/ senti ment/) on a continuous measure of positive to negative sentiment, 
with the highest score indicating the highest amount of positivity (sentiment = 1.0) and the lowest score indicat-
ing the highest amount of negativity (sentiment = 0.0). For example, the recommendation “This game sounds 
awesome” receives a positive probability score of 0.7, whereas the recommendation “This game sounds terrible” 
receives a positive probability score of 0.2 (see Table 1 for additional examples). These probability scores from the 
machine learning classifier represent the conditional probability of the recommendation being positive based on 
the features occurring in the text.

Human coding. To validate the sentiment scores from the machine learning classifier, each peer recommen-
dation was also scored by human coders recruited on Amazon’s Mechanical Turk. Each recommendation was 
rated by 3 human coders on a 0–100 scale (0 = most negative; 100 = most positive) with high interrater reliability 
(Krippendorff ’s alpha = 0.738).

Behavioral data analysis. To investigate whether peer recommendations influenced participants to 
change from their initial recommendation rating, we ran a multi-level linear model in  R30 using the lme431 and 
lmerTest32 packages. We defined recommendation rating change as being positive (+ 1) if the participant changed 
their initial ratings in the direction of the sentiment of the peer recommendation, negative (− 1) if the participant 
changed their initial ratings away from the sentiment of the peer recommendation, and zero (0) if participants 
did not change their ratings. For this purpose, peer recommendations were classified into binary categories as 
either “positive” or “negative” by using the probability scores produced by the sentiment analysis; if the classi-
fier indicated that the recommendation was more likely to be positive than negative, then it was categorized as 
positive (and vice versa). Thus, if participants changed their initial recommendation of a “5” to a final recom-
mendation rating of a “3” after reading a peer recommendation that was classified as “negative”, then the recom-
mendation rating change was calculated as “1”. To determine the relationship between peer recommendation 
sentiment scores and participants’ recommendation rating change, we ran a mixed effect (i.e., multi-level) linear 
regression predicting the participants’ recommendation rating change from the sentiment scores of the peer 
recommendations. Participants and mobile game apps were treated as random effects with intercepts allowed to 
vary randomly, accounting for non-independence in the data due to repeated measures from each participant 
and mobile game app:

where B0 is the overall intercept, representing the grand mean across all observations, B1 is an unstandardized 
regression coefficient capturing the average slope of the relationship between sentiment and recommendation 
rating change; subscript i refers to participant, j refers to app, and μ0i and ν0j represent the random errors for the 
deviation of the mean intercept for each participant and app from the grand mean intercept, respectively, and 
ǫij, is the random error for each app rating within participants.

Recommendation rating changeij = B0 + B1sentimentij + µ0i + ν0j + ǫij,

Table 1.  Example of peer recommendations and their sentiment scores.

Peer recommendation Sentiment score

This game was one of the most boring games I have ever played. The idea is not original and the graphics are not what 
they could be at all. I would save your time 0.10

This bear can only move while touching blocks; so be sure to get rid of all the circles and triangles so she can freely move 
along to the next level! 0.50

In this game you are on a fantastical journey to release a dragon from a book. It is a unique premise and is definitely 
entertaining. Original and fun 0.82

http://text-processing.com/api/sentiment/
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Imaging data analysis. Functional data were pre-processed and analyzed using Statistical Parametric 
Mapping (SPM8, Wellcome Department of Cognitive Neurology, Institute of Neurology, London, UK). To allow 
for stabilization of the BOLD (blood oxygen level dependent signal), the first five volumes (7.5 s) of each run 
were not collected. Functional images were despiked using the 3dDespike program as implemented in the AFNI 
 toolbox33. Next, data were corrected for differences in the time of slice acquisition using sinc interpolation, with 
the first slice serving as the reference slice (using FSL  Slicetimer34). Data were then spatially realigned to the first 
functional image. Next, in-plane T2-weighted images were registered to the mean functional image. Next, high-
resolution T1 images were registered to the in-plane image (12 parameter affine). After coregistration, high-res-
olution structural images were segmented into gray matter, white matter, and cerebral spinal fluid (CSF) to create 
a whole brain mask for use in modeling. Masked structural images were normalized to the skull-stripped MNI 
template provided by FSL (“MNI152_T1_1mm_brain.nii”). Finally, functional images were smoothed using a 
Gaussian kernel (8 mm FWHM).

Regions of interest analysis. We used  Neurosynth35 to define targeted brain regions of interest. Specifi-
cally, we used “association test” meta-analytic maps of the functional neuroimaging literature on “value”, which 
consisted of subregions in the striatum and ventral medial prefrontal cortex (VMPFC) (see Fig. 2), and “men-
talizing”, which consisted of subregions in the middle and dorsal medial prefrontal cortex (MMPFC, DMPFC), 
bilateral temporoparietal junction (TPJ), precuneus (PC/PCC), middle temporal gyrus (MTG) (see Fig. 3).

Task and item-based analyses. Data were modeled using the general linear model as implemented in 
SPM8. For each trial, the review (11 s) and final rating (3 s) periods were modeled together, since participants 
were incorporating peer recommendations to inform their final recommendation ratings during both periods. 
All models included six rigid-body translation and rotation parameters derived from spatial realignment as nui-
sance regressors. Low-frequency noise was removed using a high-pass filter (128 s). We constructed individual 
models for each subject in which the review and final rating periods for each mobile game app were treated as 
separate regressors in the design matrix (i.e., an item-based model) using SPM8. Reminder periods across trials 
were modeled using one regressor of no interest. Fixation periods (i.e., rest periods) served as an implicit base-

Figure 2.  Brain regions associated with “value”, as identified through Neurosynth using an association test, 
p < 0.01, corrected. Figure was created using  MRIcro48 by the authors.

Figure 3.  Brain regions associated with “mentalizing”, as identified through Neurosynth using an association 
test, p < 0.01, corrected. Figure was created using  MRIcro48 by the authors.
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line. Neural activity in our mentalizing and valuation ROIs was extracted for each mobile game app at the indi-
vidual level, and percent signal change was calculated by dividing mean task activity by the baseline/rest period. 
For each participant, the extracted percent signal change was mean centered across the mobile game apps.

Combining mean brain activity and behavior data. In order to understand the relationship between 
brain activity and sentiment of peer recommendations, and participants’ recommendation rating change, we ran 
linear mixed effects models (i.e., multi-level regression models) in  R30 using the lme431 and lmerTest32 packages. 
Participants and mobile game app were treated as random effects with intercepts allowed to vary randomly, 
accounting for non-independence in the data due to repeated measures from each participant and mobile game 
app.

First, to examine whether neural activity was influenced by the sentiment of peer recommendations partici-
pants received in the scanner, we ran multi-level linear regression models predicting participants’ percent signal 
change in each of our ROIs from the sentiment scores, including random intercepts for participant and app:

where B0 is the overall intercept, representing the grand mean across all observations, B1 is an unstandardized 
regression coefficient capturing the average slope of the relationship between sentiment and brain activity; sub-
script i refers to participant, j refers to app, and μ0i and ν0j represent the random errors for the deviation of the 
mean intercept for each participant and app from the grand mean intercept, respectively, and ǫij, is the random 
error for each app rating within participants; “brain activity” represents activity in the target regions of interest, 
with separate models run for mentalizing and valuation systems.

Next, to determine the relationship between brain activity and participants’ recommendation rating change, 
we ran additional multi-level linear regressions predicting participants’ recommendation rating change from 
neural activity extracted as percent signal change from each of our ROIs per mobile game app, including random 
intercepts for participant and app:

where B0 is the overall intercept, representing the grand mean across all observations, B1 is an unstandardized 
regression coefficient capturing the average slope of the relationship between brain activity and recommendation 
rating change; subscript i refers to participant, j refers to app, and μ0i and ν0j represent the random errors for the 
deviation of the mean intercept for each participant and app from the grand mean intercept, respectively, and 
ǫij, is the random error for each app rating within participants; “brain activity” represents activity in the target 
regions of interest, with separate models run for mentalizing and valuation systems.

Finally, to determine whether the effects of brain activity on recommendation rating change were particularly 
driven by positive or negative recommendations, we tested the interaction between brain activity and sentiment 
to predict recommendation rating change, including random intercepts for participant and app:

where B0 is the overall intercept, representing the grand mean across all observations, B1 is an unstandardized 
regression coefficient capturing the average slope of the relationship between brain activity and recommenda-
tion rating change, B2 is an unstandardized regression coefficient capturing the average slope of the relationship 
between sentiment and recommendation rating change, B3 is an unstandardized regression coefficient capturing 
the average slope of the interaction effect of brain activity and sentiment on recommendation rating change; 
subscript i refers to participant, j refers to app, and μ0i and ν0j represent the random errors for the deviation 
of the mean intercept for each participant and app from the grand mean intercept, respectively, and ǫij, is the 
random error for each app rating within participants; “brain activity” represents activity in the target regions of 
interest, with separate models run for mentalizing and valuation systems. For these analyses, we mean centered 
the sentiment variable (i.e., so that 0 = neutral sentiment). As previously noted, the brain activity variables were 
mean centered within each participant for all analyses.

Psychophysiological interaction (PPI) analysis. We next tested the relationship between functional 
connectivity between neural activity in the brain’s valuation and mentalizing systems and recommendation rat-
ing change. We used psychophysiological interaction (PPI)  analysis29. PPI tests the hypothesis that brain activity 
in one region (e.g., mentalizing system) can be explained by the interaction between brain activity in another 
region (e.g., valuation system) and a cognitive process (e.g., accepting vs. resisting peer influence). Accordingly, 
we used PPI to compare the strength of functional connectivity between the brain’s mentalizing and valuation 
systems when participants changed their recommendation ratings to be congruent with peer recommendations 
(recCHANGE) versus when participants did not change their recommendation ratings (NOrecCHANGE). We 
used the same valuation region of interest as defined above for the mean activation analyses as the seed region. 
Using the SPM generalized PPI  toolbox36, time courses in the seed region were extracted, averaged, and decon-
volved with the canonical HRF using the deconvolution algorithm in SPM8 for each participant. Then, the time 
course in the seed region was multiplied by the behavior variable of interest (recCHANGE vs. NOrecCHANGE), 
and this resulting time course was re-convolved with the canonical HRF. The PPI model also included 6 motion 
parameters as nuisance regressors of no interest. The group-level model was then created by combining first-
level contrast images using a random effects model. Finally, average parameter estimates of functional con-
nectivity between the seed (i.e., valuation) region and target mentalizing region of interest were extracted at the 

Mean brain activityij = B0 + B1sentimentij + µ0i + ν0j + ǫij,

Recommendation rating changeij = B0 + B1brain activityij + µ0i + ν0j + ǫij,

Recommendation rating changeij = B0+B1brain activity+B2sentimentij+B3brain activity∗sentiment+µ0i+ν0j+ǫij,
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group level. We then conducted a t-test for statistical inference, to determine whether the extracted parameter 
estimate was significantly different than zero at p < 0.05.

Results
Our analysis examined whether the brain’s mentalizing and valuation systems could account for variability in 
changing participants’ own recommendations in response to peer recommendations. We related mean brain 
activity in the valuation and mentalizing systems to (1) the sentiment of the peer recommendations, (2) whether 
participants changed their original recommendations after reading peer recommendations (i.e., recommenda-
tion rating change), and (3) the interaction of the mean brain activity in the valuation and mentalizing systems 
with the sentiment of the peer recommendations to predict recommendation rating change. We then also tested 
whether functional connectivity between the valuation and mentalizing systems was associated with increased 
or decreased likelihood of recommendation rating change.

Sentiment classifier and human coding. We first compared our machine learning classifier sentiment 
scores with the human coded sentiment scores to validate our measure. The two measures were significantly 
correlated (r = 0.611, t (2930) = 41.802, p < 0.001), suggesting that our use of the machine learning classifier is 
reasonable. We focus on results using the machine learning classifier measure of sentiment because this measure 
is scalable and reproducible, but analogous analyses using the human coded measures of sentiment produce 
similar results (see Supplementary information), thereby increasing our confidence in the machine classifier and 
validating our approach.

Recommendation rating change and sentiment. We then checked whether the sentiment of the peer 
recommendations influenced whether participants changed their own initial recommendations. Participants 
changed their initial recommendations 43.12% of the time, primarily in alignment with the sentiment of the peer 
recommendations; that is, participants changed their initial recommendations to be more positive when they 
read peer recommendations higher in positivity and vice versa (effect of positivity vs. negativity on the direction 
of opinion change in a multi-level model accounting for non-independence due to repeated observations from 
participants and mobile game app: B = 1.038, t(2573) = 11.96, p < 0.001). In addition, such effects were greater for 
peer recommendations higher in negativity than positivity, with participants more likely to change their initial 
recommendation toward that of their peers after reading recommendations higher in negativity (effective of pos-
itivity vs. negativity on likelihood to change opinion in a multi-level model accounting for non-independence 
due to repeated observations from participants and mobile game app: B = − 0.450, t(2160) = − 6.928, p < 0.001). 
Thus, both positive and negative peer recommendations significantly and robustly affected participants’ final 
ratings; further, recommendations that were more negatively framed had the greatest influence in changing the 
initial recommendation of participants, suggesting that negativity may propagate more strongly than positivity 
in this context.

Mean brain activity and sentiment of recommendation. We next examined whether neural activ-
ity in the valuation and mentalizing systems was correlated with the sentiment of the peer recommendations. 
Results indicated that mean activity in the mentalizing regions, but not valuation regions, was greater when 
participants were considering peer recommendations that were higher in negativity (mentalizing: B = − 0.062, 
t(2929) = − 2.137, p = 0.033; valuation: B = 0.016, t(1933) = 0.598; p = 0.550). Thus, the more that a peer recom-
mendation conveyed negative sentiment about a mobile game app, the greater the engagement of the mental-
izing system. By contrast, the sentiment of the reviews was not associated with activity in the valuation system.

Mean brain activity and recommendation rating change. We next examined whether neural activ-
ity in the valuation and mentalizing systems was greater during trials where participants updated their initial 
recommendation ratings to align with their peers. Increased mean activity in the valuation and mentalizing 
regions was associated with a significantly higher likelihood that participants changed their ratings to align with 
the peer recommendation (valuation: B = 0.115, t(2765) = 2.696; p = 0.007; mentalizing: B = 0.084, t(2768) = 2.101, 
p = 0.036). Thus, the more that a written peer recommendation engaged activity in the valuation and mentalizing 
regions of the brain, the more likely participants were to update their initial recommendations about the mobile 
game app to align with the peer recommendation. We did not observe any interaction between the sentiment of 
the review and neural activity in the valuation system in predicting recommendation rating change (see Table 2), 

Table 2.  Predicting participants’ congruent recommendation rating change from mean activity in valuation 
regions, sentiment of peer recommendations and their interaction (positive coefficients indicate greater change 
in the direction of the recommendation). *p < 0.05, **p < 0.01, ***p < 0.001.

Predictor B t df p

Intercept 0.145 7.088 41.01 < 0.001***

Valuation 0.123 2.897 2764 0.004**

Sentiment − 0.087 − 7.008 2163 < 0.001***

Valuation*Sentiment 0.027 0.634 2780 0.526
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suggesting that the value signal was equally indicative of whether a participant would change their initial recom-
mendation to be consistent with the peer recommendation for both positive and negative reviews. In the mental-
izing system, however, we observed a marginally significant interaction between the sentiment of the review and 
brain activity (see Table 3), such that increased response in mentalizing regions to negative recommendations 
resulted in greater opinion change (simple effect of mentalizing on recommendation rating change for negative 
peer recommendations: B = 0.129; t(1659) = 2.763; p = 0.006), but not in response to positive peer recommen-
dations (simple effect of mentalizing on recommendation rating change for positive peer recommendations: 
B = − 0.008; t(1075) = − 0.119; p = 0.905).

Functional connectivity and recommendation rating change. We next examined whether func-
tional connectivity between regions of the brain’s valuation and mentalizing systems was associated with 
increased or decreased likelihood of recommendation rating change to align with peers. Results using PPI analy-
sis with our valuation regions of interest as a seed indicated that greater connectivity between the brain’s valu-
ation and mentalizing systems was associated with decreased likelihood of recommendation rating change to 
align with peers (PPI = − 0.003, t(32) = − 2.111, p = 0.043, where PPI is the parameter estimate of the relationship 
between activity in the valuation and mentalizing systems during recommendation rating change compared to 
no recommendation rating change). In other words, recommendation rating change was associated with less 
correlation in activity between the brain’s valuation and mentalizing systems.

Discussion
Results of the current study highlight the robust involvement of the brain’s valuation system in tracking and 
incorporating social influence in situations that are analogous to online recommendations made in the current 
media environment. Increased brain activity in valuation regions as participants read naturalistic peer recom-
mendations was associated with recommendation rating change to conform with peer opinions. This did not 
differ by the sentiment of the social influence. Thus, in this context, the brain’s valuation system tracked the value 
of the peer recommendations, such that increased valuation activity was associated with greater likelihood of 
recommendation congruent change. Findings also suggest that brain systems that support considering others’ 
mental states are important in incorporating peer recommendations to inform one’s own recommendations, and 
that this effect is particularly driven by negatively framed peer recommendations. We also show novel evidence 
that suggests that decreased connectivity between valuation and mentalizing is associated with recommendation 
rating change (i.e., increased connectivity between valuation and mentalizing is associated with resistance to peer 
influence). One possibility is that the brain’s value and mentalizing regions may operate relatively independently 
or in a less correlated manner when people incorporate others’ opinions to update their own recommendations, 
whereas negative valuation of peer recommendations might suppress mentalizing.

Using an externally valid paradigm of peer influence on recommendations in the online media  context10, 
we found that increased mean activity within the brain’s valuation regions as participants incorporated peer 
recommendations in real-time is associated with greater recommendation rating change to conform with peer 
recommendations. This aligns with prior research on peer recommendations in adolescents showing that mean 
activity in regions of the brain’s valuation system during peer feedback is associated with likelihood to conform 
to peer  influence10,11. We extend these findings to suggest that these effects are not specific to adolescents, but 
also holds in a young adult sample, and in a context with more complex, natural language recommendations 
(rather than sparser information about peer opinions).

We did not observe a significant interaction between the sentiment of the recommendation and activity in the 
brain’s valuation system to predict recommendation rating change. This finding suggests that, in this recommen-
dation paradigm, the value signal tracked the value of the peer recommendation when receivers of influence were 
first exposed to peer opinions and actively made decisions to update their own opinions. In contrast to studies 
showing that the value signal tracks whether a receiver’s initial opinion is in line with the peer influence, such 
that greater activity is associated with already agreeing with  peers4,5,8, we find that greater activity in the value 
system seems to track likelihood to change opinions to come into alignment with  peers10,11. This difference may 
arise from differences in the timing of the peer feedback in different paradigms. In studies where the valuation 
system was found to track congruence with peer  opinion4,5,8, receivers’ initial opinions were collected and peer 
feedback was provided directly after, but receivers’ final opinions were collected in a later session (e.g., 1 h later). 
In contrast, in studies that have found results consistent to ours (i.e., wherein valuation activity tracks whether 
or not participants choose to conform to peer  influence10,11), receivers’ initial opinions were first collected, and 

Table 3.  Predicting participants’ congruent recommendation rating change from mean activity in mentalizing 
regions, sentiment of peer recommendations and their interaction (positive coefficients indicate greater change 
in the direction of the recommendation). † p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

Predictor B t df p

Intercept 0.144 7.120 40.644 < 0.001***

Mentalizing 0.074 1.865 2766 0.062†

Sentiment − 0.085 − 6.845 2158 < 0.001***

Mentalizing*Sentiment − 0.065 − 1.669 2785 0.095†
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then at a later session (e.g., 1 h later), receivers were provided peer feedback and asked about their final opinion 
immediately after learning the peer feedback. Taken together, these data suggest that the valuation system may 
serve a different role depending on the relative timing of peer influence and collection of the receivers’ opinions, 
and hence whether the valuation signal likely tracks the direct valence of the recommendation or the participant’s 
valuation of the recommendation itself, regardless of the valence. The timing of data collection is particularly 
relevant to the current online social environment, where online users often read recommendations that are writ-
ten by others and then immediately post their own recommendations, which is similar to the paradigm we used 
in the current study. Our results augment a growing body of literature that examine social influence in contexts 
that more closely resemble online recommendation platforms (e.g., Yelp, Amazon), suggesting the valuation 
signal tracks the value of the peer recommendation in this  context10,11.

We found that the mean activity in the brain’s mentalizing regions while participants considered and incor-
porated peer recommendations was associated with recommendation rating change. These findings corroborate 
previous research showing that mean activity in regions of the brain’s mentalizing system is implicated in pro-
cessing of divergent social  feedback10,11, and that receivers of influence who display greater mean mentalizing 
activity are also more likely to change their opinion toward that of peer  influence10.

We observed a marginally significant interaction between the sentiment of the recommendation and activity 
in the brain’s mentalizing system to predict recommendation rating change. These findings suggest that the brain’s 
mentalizing system may be recruited more strongly in situations where social consequences are the most salient, 
such as those that may signal negativity. Our data are consistent with research on negativity bias which suggests 
that across diverse domains, people are more sensitive to negative than positive  information27; for instance, nega-
tive recommendations have greater impact on consumer behavior than positive  recommendations2, and negative 
information more robustly affects formations of social  impressions37,38. Our data extend these findings to suggest 
that people show increased neurocognitive and behavioral sensitivity to recommendations that express negativity 
about an entity, with negative recommendations invoking more thoughts about the social implications of one’s 
own opinion. Given the importance of social coordination in  humans39,40, the increased mentalizing response is 
consistent with the idea that people may find negative recommendations as more socially important or relevant. 
Indeed, activity in the brain’s social pain and mentalizing regions during social exclusion is associated with greater 
vulnerability to social  influence23, and negative information is preferentially propagated over positive informa-
tion in social  contexts26. We interpret these findings with caution given that the interaction effect was marginally 
significant. Nonetheless, our findings are consistent with an account of social influence where negatively framed 
information may be thought to be more socially salient and lead to greater conformity to social influence.

In a novel contribution, we also examined whether and how valuation and mentalizing regions in the brain 
might coordinate to respond to peer recommendations. Our data are consistent with the notion that valuation 
and mentalizing signals operate relatively independently or in a less correlated manner when receivers of influ-
ence update their own recommendations in response to peer influence. This is consistent with past research 
showing that the flexibility of a sub-region of the brains’ valuation system—VMPFC—is associated with greater 
message-congruent behavior  change41. Flexibility is an indicator of the degree to which the VMPFC coordinates 
with different brain networks. Taken together, it is possible that a dynamic VMPFC signal may support the 
mechanisms necessary to flexibly incorporate the value of new information during decisions to update one’s own 
opinion or behavior. Our results build on and extend these findings to suggest that a less dynamic VMPFC and 
value signal (due to being consistently connected with the mentalizing system) is associated with less behavior 
change. Another possibility is that during exposure to peer recommendations, the value signal tracks the value 
of the peer recommendation regardless of valence, while the mentalizing system is more responsive under some 
conditions than others (in this case, negative reviews were more salient in engaging the mentalizing system). 
A third possibility is that negative valuation of recommendations may actively suppress mentalizing activity 
(i.e., the two systems may show more coordination when participants do not change their opinion). Additional 
work that further examines brain network connections will help paint a more complete picture of the neural 
mechanisms that support social influence.

Combined, our findings contribute insights into the processes that are implicated when people consider rec-
ommendations from other consumers when making decisions about a product, as occurs frequently in online 
shopping environments. Understanding these drivers is particularly important given the tremendous influence 
that online reviews have on consumer behavior in a wide range of  contexts2,7,42,43. Further, our study focused on 
one type of social influence online that shoppers widely engage in: considering recommendations from strangers 
who have had prior experience with the product. It remains unclear whether our findings would generalize in 
other contexts, such as when a shopper receives recommendations from a friend, family member, or an intimate 
partner. The notion of homophily suggests that people are friends with others who are similar to  themselves44 
and become more similar with one another over time due to mutual social  influence45; thus, one possibility is 
that the effects that we observed in our study would be even more pronounced when people receive feedback 
from familiar others compared to strangers. On the other hand, other work suggests that people are less likely 
to socially conform to friends than strangers 46, and that people exert greater physiological synchrony in certain 
contexts with strangers than friends and romantic partners 47. Future work that explicitly tests the associations 
between the psychological and neural drivers of social influence and the source of the influence would help 
further clarify between these possibilities.

In conclusion, our data suggest that brain systems that support processing the value of different entities and 
understanding others’ mental states are associated with recommendation rating change as a result of social 
influence in a context that mirrors the new media environment. We used real text-based recommendations and 
tracked how participants’ brains responded to peer feedback in real-time to update their recommendations. Fur-
ther, we examined whether and how the sentiment of the recommendations interacted with key brain processes 
to influence recommendation change. We found that the relationship between mentalizing and recommendation 
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rating change was marginally stronger for recommendations that are negative compared to recommendations 
that are positive, suggesting that valence may be an important factor to consider in future studies of social influ-
ence. We further highlight the value of investigating the functional connectivity between these regions in the 
brain. These results inform how recommendations propagate and the neurocognitive dynamics and features of 
recommendations that are important to this process.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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