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ScienceDirect
The development of next-generation therapies for

neuropsychiatric illness will likely rely on a precise and accurate

understanding of human brain dynamics. Toward this end,

researchers have focused on collecting large quantities of

neuroimaging data. For simplicity, we will refer to large cross-

sectional neuroimaging studies as broad studies and to

intensive longitudinal studies as deep studies. Recent progress

in identifying illness subtypes and predicting treatment

response in neuropsychiatry has been supported by these

study designs, along with methods bridging machine learning

and network science. Such methods combine analytic power,

interpretability, and direct connection to underlying theory in

cognitive neuroscience. Ultimately, we propose a general

framework for the treatment of neuropsychiatric illness relying

on the findings from broad and deep studies combined with

basic cognitive and physiologic measurements.
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Introduction
Neuropsychiatric illness has widespread and devastating

effects on populations around the world, affecting approxi-

mately 20% of individuals in the U.S. alone [1]. Converging
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evidence from genetic, behavioral, and neuroimaging [2,3]

studieshasdemonstrated overlapping pathological features

in these disorders, suggesting that both common and

unique pathophysiological mechanisms underlie clinical

symptoms such as anxiety, depression, and psychosis.

Accordingly, the classic notion of discrete psychiatric syn-

dromes defined by clinical symptoms [4] is being chal-

lenged by more biologically and empirically driven models

that link brain and behavior [5]. High rates of comorbidity

between disorders hamper the identification of generaliz-

able pathophysiological principles, similar to those that

allow us to understand dysfunction of less complex internal

organs. The dearth of such principles may partially explain

the fact that a large cohort of patients do not respond to

psychotherapy, psychopharmacologics [6], and brain stim-

ulation protocols [7�]. Indeed, a marked consequence of the

brain’svast complexity is theexistence ofmany distinctand

overlapping pathways for cognitive function and dysfunc-

tion, constituting a major challenge in developing accurate

diagnoses and predicting individual responses to

treatment.

How, if ever, can we elucidate and intervene on these

overlapping pathophysiological mechanisms that underlie

neuropsychiatric illness? Recent efforts toward this aim

have focused on the acquisition of human neuroimaging

data sets with samples of unprecedented size [8�,9–11].
These so-called broad studies provide an excellent pic-

ture of between-individual or population-level variance,

allowing the prediction of treatment response from high-

dimensional neuroimaging and affective phenotypes

based on methods from network neuroscience and

machine learning [12��]. The widespread application of

such methods has been facilitated by advances in com-

puter processing power and repurposing of graphics pro-

cessing units (GPUs) for machine learning. In comple-

mentary efforts, researchers have also collected data with

repeated measures on a small cohort or single individual.

These so-called deep studies have generated insights into

the substantial within-individual variation in neuroimag-

ing phenotypes that occurs on the scale of days, weeks,

and months [13�,14,15]. Daily changes in neuroimaging

phenotypes have also been linked to variability in behav-

ioral and affective profiles [16], suggesting that temporal

derivatives of neuroimaging phenotypes may contain

unique, neuropsychiatrically relevant information. As

such, both broad and deep studies have uniquely con-

tributed to our understanding of healthy neurophysiology

and neuropsychopathology.
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While initial progress has been made through these

unique forms of big data, neuropsychiatry still remains

far from the goal of using generalizable principles to

develop and deliver treatment. In this review, we begin

by describing the results of broad and deep studies in

more detail, along with methods well-suited for each

study type. Next, we describe a framework to maximize

the clinical translatability of broad and deep neuroimag-

ing studies. Specifically, we posit that broad studies can

inform models that identify who would benefit from

intervention and how to intervene, while deep studies

can inform models that suggest when to intervene. Net-

work science and machine learning serve as the founda-

tions for these models and will undoubtedly play a critical

role in the coming generation of neuropsychiatric care.

Informing diagnosis and treatment through
large population-level studies
Within the past decade, the neuroimaging community has

seen the emergence of broad neuroimaging studies with

historically large sample sizes (Figure 1). The Human

Connectome Project [9], the UK Biobank [8�], the Phi-

ladelphia Neurodevelopmental Cohort [11], and Enhanc-

ing Neuroimaging Genetics through Meta-Analysis
Figure 1
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(ENIGMA) [10] have each generated valuable insights

into the relations among brain structure, brain function,

and behavior. Importantly, analyses of these data have

increasingly relied on methods from network neurosci-

ence [17�], an emerging field that provides elegant

approaches for the quantitative description of complex

multivariable phenotypes in brain anatomy and physiol-

ogy. In large-scale brain networks, one can succinctly

capture the collective role of several regions simulta-

neously through node-level metrics, such as the partici-

pation coefficient [18,19], controllability [20], hubness,

nodal efficiency [21], and weighted degree [18] (Box 1).

These metrics can be readily computed using freely

available code [22,23]. Notably, these statistics are influ-

enced by the topology of the entire network, change

dynamically over time in functional networks [24], and

are altered in neuropsychiatric disease [25–27]. To com-

bine brain network models with clinical, behavioral,

genetic, and cognitive data requires the use of multivari-

ate statistical approaches that acknowledge the complex-

ity of each of these data types by jointly accounting for

their covariance structure [8�,28]. Sparse canonical corre-

lation analysis (sCCA) [29] and partial least squares (PLS)

[30] are two examples of such multivariate statistical
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een the rise of studies with increasingly large sample sizes (broad

eft) typically involve cross-sectional sampling of a specific population.

 of methods that are well-suited to identify high-dimensional patterns

tely, such models might lead to the automated classification of

redictions of responses to various treatment options. Deep studies

dividuals longitudinally over days, months, or years. Multilayer network

rain activity, transcriptomes, metabolomes, or behavior changes over

varying edges represent their time-dependent interactions. Such

dividual networks over time affects treatment response.
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Box 1 Modularity Complex networks often contain non-trivial

clustering in the form of modularity, in which groups of nodes exist

that are more densely connected with each other than with nodes in

other modules [18,31].

Network density A fully dense network is one in which a connection

exists between every possible pair of nodes. The density of a net-

work is the number of existing connections divided by the number of

possible connections.

Participation coefficient Participation coefficient quantifies the

extent to which a node sits on the boundary of multiple modules

[18,19,31,32], poised to coordinate activity between functional sys-

tems of the brain [33].

Weighted degree The weighted degree, or strength, of a node is the

sum of its connection weights. Weighted degree can be further

broken down into within-module and between-module degree,

referring to the strength of a node’s connections to nodes in the

same module or in other modules.

Hubs Hubs are brain regions with unique roles in structural and

functional networks due to their many, and often diverse, connec-

tions with other brain regions. Hubs are often disrupted in neurop-

sychiatric illness [34,26]. Hubs can be defined in several ways

[18,19,32,35,36], often relying on a balance between participation

coefficient and within-module degree.

Nodal efficiency Nodal efficiency is a measure related to the aver-

age number of nodes that must be traversed to go from a given node

to all other nodes [21,37]. This quantifies how an individual node

contributes to the small world properties of brain networks [38].

Controllability Unlike the above metrics, which quantify the static

topological role of nodes in a network, network control theory

[17�,23] uses a dynamical systems perspective to quantify the ability

of each node to support transitions between states of activity. Two

common metrics are average and modal controllability, which cap-

ture the ability of regional input to drive nearby or distant state

transitions [23,39]. These principles have been explored in neurop-

sychiatric illness [25,40], over development [41], and across

species [42].
methods that are well-suited to identify covariance pat-

terns between brain networks and high dimensional

behavioral, clinical, and genetic data (Figure 1).

Machine learning classifiers have demonstrated clear

promise for neuropsychiatric diagnosis [43��], even with

unimodal neuroimaging data. In a multisite study

(n = 941), the ENIGMA schizophrenia working group

utilized consensus-based classifiers to distinguish indi-

viduals with schizophrenia from healthy controls with

76% accuracy using structural MRI alone [44]. However,

the clinical utility of such classifiers may not be realized

until they are able to distinguish a particular disorder from

a heterogeneous clinical population rather than healthy

controls. Results from studies based on multivariate sta-

tistics suggest that the inclusion of clinical and behavioral

data may help classifiers resolve this heterogeneity. In a

large multisite study (n = 1188), CCA was used to define

biotypes of major depressive disorder (MDD) based on

resting state functional connectivity and clinical symp-

toms, allowing for diagnosis of depression with 85-90%

accuracy in a replication set and prediction of positive
Current Opinion in Neurobiology 2019, 55:32–39 
response to transcranial magnetic stimulation (TMS)

[12��]. The model was also able to distinguish MDD

from schizophrenia more easily than from generalized

anxiety disorder, reflecting the varying degrees of overlap

in neurobehavioral phenotypes between different forms

of mental illness. Importantly, individual patient data

from independent samples can be fed into these models

to generate priors for clinicians. In the near future, these

models are likely to become increasingly powerful as

open data sharing practices facilitate the growth of train-

ing data sets [45]. Such efforts will be critical for generat-

ing low dimensional representations of clinical symptoms

and network measures of brain structure and function that

are useful in the diagnosis and sub-diagnosis of disease,

and in the selection of interventions and treatments

(Figure 1).

Harnessing individual differences and within-
subject dynamics
In contrast to broad studies, which leverage large sample

sizes to make inferences about individuals in a defined

population, deep studies are particularly suited for inves-

tigating the interdependencies between a diverse range

of phenotypes that might vary meaningfully over time in

single individuals (Figure 1). Perhaps the most impres-

sive deep study is the MyConnectome project [13�], which is

the first to describe the existence and nature of a complex

interactome between resting state functional connectiv-

ity, transcriptomics, metabolomics, food intake, and

behavior over the course of 532 days. It is interesting

to consider the potential for such an interactome to inform

the development of targeted neuromodulatory interven-

tions that depend on the state of the brain at the time of

stimulation [46]. Indeed, daily variation in brain network

connectivity could confound the effects of stimulation,

leading to mixed responses to such treatments for depres-

sion [7�]. To better understand these temporal variations,

one can consider using multilayer network models, which

can identify changes in network structure over time by

taking into account the interactions between network

components and the interactions within each network

component with time [47] (Figure 1). One can also use

linear autoregressive models, Hidden Markov Models, or

Long Short-Term Memory recurrent neural networks

[48] to predict how a complex, interacting system evolves

over time. While the level of depth reported in the

MyConnectome project is currently impractical for patient

care, it illustrates the complex origins of day-to-day

individual variation and — alongside other intensive sam-

pling studies — offers useful benchmarks to inform

future data collection [14,49,50��,51].

Typical approaches for ‘parcellation,’ – obtaining repre-

sentative signals within anatomically [52] or functionally

[33] similar regions or ‘parcels’ – tend to rely on register-

ing brain images to a common template space. However,

performing targeted manipulations of distributed
www.sciencedirect.com
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cognitive systems that exhibit dysfunction in neuropsy-

chiatric illness demands exceptional precision in mapping

brain network architecture and function. Thus, the grow-

ing focus on subject-specific parcellation to define these

parcels independently for each participant or patient is a

critical complement to the intensive sampling of deep

studies (Figure 2) [14,15,53,54]. Constructing subject-

specific parcellations builds on historical work in tumor

resection, where neurosurgeons and anesthesiologists

perform patient-specific functional mapping of language

and motor circuits with fMRI, pharmacology, and electri-

cal stimulation [55,56]. When seeking to map all circuits

across the entire brain, one would focus on mapping

individual differences in functional topography that

might hold diagnostic and prognostic value, with methods

that do not depend on warping subject-level volumes to

an average brain [50��,57]. Recently, such individualized

parcellation techniques have been combined with resting

state fMRI to identify novel subnetworks within the

default mode network (DMN) [58], a system that has

been broadly implicated in virtually every neuropsychi-

atric illness [59–62]. These observations motivate further

studies of individual differences in the distribution of

cortical real estate between particular functional networks

[63] and their finer subdivisions in the context of neuro-

psychiatric illness (Figure 2). In these efforts, deep neu-

roimaging studies will be particularly important, by pro-

viding sufficient data to use subject-specific parcellations.

This approach will account for — rather than average

over — individual network topographies (Figure 2).

Resolving individual differences in spatial topography

will facilitate an accurate study of the neural basis of
Figure 2

Group Level Individu al(a) (b)
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Subject-specific parcellation uncovers individualized topography of

functional networks. (a) Sample depiction of the default mode network

in a group-level parcellation, which warps subject volumes to standard

space, potentially averaging over important differences in functional

network topography. Yellow overlay indicates activity, while colored

lines indicate parcel boundaries. (b) Sample depiction of subject-

specific activation map (yellow overlay) with group-level parcellation

borders (colored lines) overlayed, illustrating the possible variation in

subject-specific functional topography.
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temporal fluctuations in individual symptoms. The richly

sampled temporal dimension of deep studies adds a layer

of complexity untouched by most broad studies and the

individual-oriented methodology improves the accuracy

of patient-specific predictions. Ultimately, meta-analysis

of deep studies might inform a generalizable approach, if

not pathophysiological principles, for making individual

predictions of the optimal treatment as a function of time

and a more easily measurable subset of variables.

Using network models to link intensive
behavioral assessment with neuroimaging
findings
A key counterpart to accurately interpreting changes in

functional brain dynamics over time in a patient cohort is

the ability to concurrently measure changes in behavior,

emotions, and mood — core symptoms of neuropsychiat-

ric illness, which are typically assessed retrospectively in

the clinical setting. Experience-sampling (ES) encom-

passes the measurement of these factors, in addition to

physiology, in real time through the use of personal data

recording tools [64]. Subject-specific symptom networks

can be constructed by computing cross-correlations

between measures of different emotions over time, quan-

tifying the cofluctuation of psychiatric symptoms

[65�,66,67] (Figure 3). Additionally, directed networks

can be constructed using pairwise regression between

time-lagged measures, capturing the temporal prece-

dence of symptom fluctuations [68]. Higher order features

of these symptom graphs [65�], such as network density

(Box 1), are greater in individuals with MDD than in

healthy controls [69], suggesting that the temporally

dynamic interplay between symptoms may be altered

by disease processes. ES also lends itself well to the study

of substance use disorders, in which daily emotional

variability can trigger relapse [70].

Major limitations of ES are the burden of repeated

assessment on participants and the potential for the

process of ES itself to influence symptoms (i.e. reactivity

[71]). Nevertheless, commonly used forms [72–74] for

evaluating mental health utilize retrospective reporting,

assuming stationarity in these dynamic phenotypes [75]

(Figure 3). Schizophrenia, for example, is characterized

by a lack of insight and poor working memory, and

therefore real-time assessment may be more likely to

accurately capture cognitive and emotional state than

single-shot clinical evaluations or self-report measures.

Thus, ES is a highly promising approach for identifying

neural correlates of symptom dynamics in complex, over-

lapping neuropsychiatric pathologies.

The use of ES has begun to enter into neuroimaging

studies, though not with the same force as the machine

learning techniques described above. In schizophrenia

patients, corticostriatal task activation and reduced motor

activity were found to predict negative symptoms [77].
Current Opinion in Neurobiology 2019, 55:32–39
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Figure 3
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Measuring mood dynamics with experience sampling. (a) Illustration of

symptom measurement by retrospective report, demonstrating how

scales of mood symptoms that ask for retrospective reporting average

over rich mood dynamics and are subject to recall bias [72–74]. (b)

Example time series of mood measurements from the Profile of Mood

States [76]. Spikes in the time series indicate rapid changes in mood

induced by brief events. The numbering on the x-axis indicates

windowing for network construction. (c) Illustration of multilayer

emotional network construction from subsequent windows of time

series shown in panel (b). Nodes represent mood features, with the

letter label corresponding to features in (b), solid gray edges represent

the correlation between mood features within a particular time

window, and dashed black edges link mood features together across

time. Constructing such a network facilitates the application of

numerous methods for analyzing the temporal dynamics of multivariate

relationships [47].
Similarly, physiological signs of autonomic dysfunction

acquired through wearable technology were associated

with positive symptom severity [78]. In a study of patients

with anorexia nervosa, reward circuit activity was related

to longitudinal body-mass index measurements and body-

related rumination [79]. Notably, this particular study

used group-level parcellation techniques, indicative of

a common disconnect between the use of cutting edge

methods in social science and those in neuroscience.

Despite these intriguing findings, no parallels have yet

been drawn between basic ES measures, network models

of psychiatric symptoms, and structural or functional

brain networks. Functional brain network dynamics have

been extensively characterized [24,80], and there are

likely rich relationships with behavioral and symptom

dynamics, as suggested by the MyConnectome project.

One could gain traction on these relationships using

multilayer network construction with subsequent
Current Opinion in Neurobiology 2019, 55:32–39 
community detection [47] to draw parallels between

dynamic functional networks and symptom networks.

Brain regions with high inter-scan variability in functional

connectivity and high within-scan community change,

that is, flexibility [16], may confer similar variability onto

behavior phenotypes.

The use of advanced machine learning techniques for

time series analysis, such as recurrent neural networks

and Hidden Markov Models, as well as unsupervised

multivariate statistical methods, are promising underex-

plored avenues for finding covariance between complex

neural and behavioral phenotypes in neuropsychatric

illness. Furthermore, ES could explain temporal variance

in cortical excitability [81,82], an important factor in TMS

response [83��], and allow for its targeted control. While

targeted neuromodulatory treatment paradigms are cur-

rently being refined, with the aid of findings from broad

studies, ES provides us with useful methods that will help

to identify the optimal time in a disease course to deliver

these treatments.

Conclusion
Across many academic disciplines, the use of machine

learning techniques, often informed by network theory,

has skyrocketed in the last decade, concordant with the

collection of data with larger (broad) and more intensive

(deep) samples. Both broad and deep studies provide the

neuroscience community with unique opportunities to

advance the diagnosis and treatment of neuropsychiatric

illness, with the aid of network science and machine

learning. Broad studies allow for network analysis fol-

lowed by dimensionality reduction and classification for

identifying meaningful symptom-neuropathology corre-

spondence and predicting treatment responses. Deep

studies demonstrate the importance of individual vari-

ability and provide a framework for understanding and

manipulating complex, individual phenomes. Experience

sampling provides the tools for acquiring intensive

repeated physiologic and behavioral measures, the net-

work models of which may have critical unexplored

neural correlates. Ultimately, a model using priors

derived from broad studies, patient-specific neuroimag-

ing data, and symptom networks might predict the opti-

mal timing and type of treatment for individual patients

in real time based on a subset of measurements captured

through a personal device. The merger of these techni-

ques has the potential to usher in a next-generation

approach to psychiatric care and contribute to our funda-

mental understanding of the complex relationship

between mind, body, and behavior.
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