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Multimodal network dynamics underpinning
working memory
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Complex human cognition arises from the integrated processing of multiple brain systems.

However, little is known about how brain systems and their interactions might relate to, or

perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by

proposing a mechanistic framework linking frontoparietal system activity, default mode

system activity, and the interactions between them, with individual differences in working

memory capacity. We show that working memory performance depends on the strength of

functional interactions between the frontoparietal and default mode systems. We find that

this strength is modulated by the activation of two newly described brain regions, and

demonstrate that the functional role of these systems is underpinned by structural white

matter. Broadly, our study presents a holistic account of how regional activity, functional

connections, and structural linkages together support integrative processing across brain

systems in order for the brain to execute a complex cognitive process.
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While many cognitive processes can be mapped to
individual brain regions, higher-order cognitive
capacities necessarily depend on complex interactions

across large-scale brain systems via regional activity, functional
connections, and structural linkages. One example of a cognitive
process that depends on multiple systems is working memory,
which supports the short-term storage of information, thereby
facilitating its further manipulation and processing1. Individual
differences in working memory performance have been associated
with differences in the recruitment of distinct brain systems, and
in the functional interactions between such systems2–4. Working
memory function is in part supported by the frontoparietal cor-
tex, involved in cognitive control5,6, as well as the default-mode
system, notable for its activation in the human resting state.
Interestingly, these two systems are thought to have opposite
effects on working memory: frontoparietal activity is vital for
directing attention to external stimuli7, while default-mode
activity is important for internally directed cognition8. Notably,
the interactions between these two systems vary with cognitive
state9, and play a critical role in goal-directed cognition10. Gen-
eral large-scale mechanisms of how brain systems interact to
execute complex and integrative cognitive processing have been
proposed4,11,12, where nodes in the frontoparietal network (i.e.,
connector nodes), via diverse connections across the brain sys-
tems and strong connections to each other, tune the connectivity
between the brain’s distinct systems to achieve integrated cogni-
tion. However, it is unknown exactly how this occurs for a specific
cognitive process between the brain systems known to subserve
that process. Here, we address this gap in exactly how the fron-
toparietal network tunes brain connectivity by analyzing how the
frontoparietal system interacts with and modulates the default-
mode system during working memory.

Previous analyses have suggested that these two systems tend
to be in functional competition during tasks with high working
memory load; in such tasks, the activity of the two systems is
anticorrelated13. This anticorrelation might enable maximally
disjunctive levels of activity13. More simply, intersystem compe-
tition might allow for a pattern of whole-brain dynamics char-
acterized by heightened activity in the frontoparietal system
coupled with decreased activity in the default-mode system.
Explaining such a pattern of dynamics is particularly important in
light of evidence that it favors improved working memory per-
formance14. However, while of course conceptually interesting,
competition is not in itself a mechanism. Thus, here, we seek to
address how competition may come about and the dynamic
processes underlying competition. By illuminating possible causal
pathways underpinning competition, a mechanistic framework
would allow for the investigation and validation of cognitive
arguments. Further, a mechanistic framing of competition may
not only depend on functional brain network observations, but
may also draw on the white matter structures subserving those
functional dynamics. Structurally, it is well known that the two
systems are quite distinct in terms of their topological role within
the connectome: the default-mode system is part of the so-called
rich club of the structural connectome, which is a set of densely
interconnected high-degree nodes, while the frontoparietal sys-
tem is part of the so-called diverse club, which is a set of densely
interconnected nodes with diverse connectivity across all putative
cognitive systems11. It is intuitively plausible that such distinct
placements within the larger whole-brain network could con-
strain or define the roles that each system can play in inducing
certain types of dynamics in general15,16, and competition in
particular.

Here, we seek to perform a study of multimodal neural phe-
notypes, including regional activity, interregional connectivity,
and structural linkages and their relationship to individual

differences in working memory function. In particular, we seek to
form a mechanistic framework to explain how these multimodal
neural phenotypes produce competition between the frontopar-
ietal and the default-mode system. We also seek to complement
data-driven analysis of empirical measurements with biologically
motivated computational modeling to probe the validity of our
explanations and posited mechanisms. Specifically, in this study,
we use functional magnetic resonance imaging data collected
from 644 healthy adult human participants in the Human Con-
nectome Project during the performance of a 2-back working
memory task. To address potential structural drivers of our
findings, we also use diffusion tensor imaging data acquired in the
same participants. We begin by using a model-based scheme to
uncover functional groups or subnetworks within the entire
frontoparietal system, which we subsequently find to display
distinguishable patterns of gene coexpression. Specifically, we find
that the frontoparietal system can be fractioned into two non-
overlapping subnetworks, where one subnetwork is functionally
aligned with the default-mode system, and the other subnetwork
is functionally aligned with the dorsal attention system. We show
that the relative activity level of these two subnetworks can push
the frontoparietal system into functional alignment with either
the default-mode or the dorsal attention system. We then
demonstrate that the strength of structural linkages between the
subnetworks and the dorsal attention and default-mode system
mirrors the strength of the functional linkages. Last—drawing on
methods from the physics of complex systems and the theory
of nonlinear dynamical systems—we build a computational
model of the system and its dynamics as a collection of coupled
oscillators, with parameters and coupling architecture informed
by the biological evidence we uncover. We use the model to probe
which model parameters are able to produce the observed phe-
nomena, and to test our hypotheses about the relationships
between activity, anatomical connectivity, and functional
interactions.

Results
Frontoparietal subnetworks modulate functional connectivity.
We propose that the dynamics of the frontoparietal system
directly modulate the strength of the functional connection
between the frontoparietal and default-mode systems. For a dis-
cussion of contextualizing results and motivation for this specific
choice, see Supplementary Notes 1 and 2. Our candidate
mechanism assumes that the frontoparietal system is composed
of two distinct, nonoverlapping subsystems. One network is
posited to display dynamics that are correlated with the dynamics
of the default-mode system, while the other subnetwork is posited
to display dynamics that are anticorrelated with the dynamics of
the default-mode system (Fig. 1a). The basis of this hypothesis
was twofold: (1) there is prior work suggesting that the fronto-
parietal network is divisible into two subnetworks17, and (2) one
possible parsimonious way for the subnetworks to arbitrarily tune
the frontoparietal–default-mode system connection is for one
subnetwork to be correlated with the default mode and the other
to be anticorrelated with the default mode. Further, we propose
that the relative activity magnitudes of these two systems interact
to tune the strength of the intersystem (frontoparietal–default-
mode) connection. When the first subnetwork is highly active
relative to the second subnetwork, the strength of the intersystem
connection will be positive; conversely, when the second sub-
network is highly active relative to the first subnetwork, the
strength of the intersystem connection will be negative. Such an
arrangement would allow for flexible tuning of the functional
connection strength between the frontoparietal and default-
mode systems. Importantly, this process would offer one possible
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mechanism to account for observed individual differences in
frontoparietal–default-mode functional connection strength.
Next, we hypothesize that two such subnetworks exist within the
frontoparietal system, and we seek to identify them.

To assess the validity of this conceptual model, we first test the
assumption that the frontoparietal system is composed of two
distinct, spatially nonoverlapping subsystems. For each subject,
we applied a weighted stochastic block model with K= 2 to the
subgraph of the functional connectivity matrix representing
functional connections between frontoparietal regions, and then
we extracted a group-representative partition using a consensus
similarity method18 (see “Methods”). The two subnetworks are
shown on the cortex in Fig. 1b. To assess the statistical
significance of this partition, we performed a nonparametric test,
permuting the association of regions to subnetworks (see
“Methods”). Against the null model, we found that this final
consensus partition had a significantly higher log-likelihood using
a multilevel model (β=−492.57, p < 0.0001, t(1769)=−71.0,
SE= 6.9371, n= 2414). In addition, we fit the stochastic block
model to our data using K= 1 and K= 3 to calculate the log-
likelihood of the model fitting the data. We bootstrapped over
subjects 10,000 times to calculate the difference in log-likelihood
using K= 2 versus K= 1 or K= 3. Importantly, we found that
the log-likelihood of the stochastic block model fits was
significantly greater for K= 2 relative to K= 1 (p < 0.0001) and
relative to K= 3 (p < 0.0001).

To further validate their biological distinctness, we sought to
determine whether the two subnetworks showed distinguishable

patterns of gene expression. To this end, we quantified the
average magnitude of gene coexpression for pairs of regions for
which both regions were located within a single subnetwork. We
also quantified the average magnitude of gene coexpression for
pairs of regions for which one region of the pair was located in
one subnetwork, and the other region of the pair was located in
the other subnetwork (see “Methods”). When tested against a
nonparametric null model, we found that gene coexpression
within subnetwork (A) was significantly higher than gene
coexpression between subnetwork (A) and subnetwork (B)
(p= 0.0057). Similarly, we found that gene coexpression within
subnetwork (B) was higher than gene coexpression between
subnetwork (B) and subnetwork (A) (p= 0.0111). For a
complementary analyses demonstrating that this result cannot
be explained by distances between regions, see Supplementary
Note 6. For a complementary analysis discussing at which genes
these subnetworks differ, see Supplementary Note 7. These
findings support the notion that subnetwork (A) and subnetwork
(B) are biologically distinct sectors of the frontoparietal system.

Next, we sought to test our proposition that—of the two
frontoparietal subnetworks—one displays dynamics that are
correlated with the dynamics of the default-mode system, while
the other displays dynamics that are anticorrelated with those of
the default-mode system. For each subject and each subnetwork,
we calculated the strength of the functional connection between
all pairs of regions for which one region of the pair is located in
the subnetwork and the other region of the pair is located in the
default-mode system. Consistent with our hypothesis, we found
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Fig. 1 Subnetworks of the frontoparietal system. a We hypothesized that the strength of the connection between the frontoparietal and default-mode
systems can be tuned by altering the relative amplitudes of subnetworks within the frontoparietal system. b Community detection reveals two distinct
frontoparietal subnetworks, which we show here projected onto the cortical surface. c We found that the activity of subnetwork (A) was positively
correlated with the activity of the default-mode system (mean r= 0.042, p < 0.001, t(1206)= 20, 95% CI: [0.038, 0.046]), while the activity of
subnetwork (B) was negatively correlated with the activity of the default-mode system (mean r=−0.082, p < 0.001, t(1206)=−27, 95% CI: [−0.088,
−0.076]). d Using a simple regression model, we tested whether the strength of the functional connection between the default-mode and frontoparietal
systems could be predicted by a linear combination of the activity of subnetwork (A) and the activity of subnetwork (B). Within this model, we found that
an increase in subnetwork (A) activity corresponds to an increase in the strength of the functional connection between the frontoparietal and default-mode
systems (estimate of regression coefficient β= 0.006535, 95% CI: (0.00519, 0.00788), p < 0.001, t(1204)= 9.54). e Conversely, within the same model,
we found that an increase in subnetwork (B) activity corresponds to a decrease in the strength of the functional connection between the two systems
(estimate of regression coefficient β=−0.0112, 95% CI: (−0.01273, −0.0097), p < 0.001, t(1204)=−14.3).
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that subnetwork (A) is positively connected with the default-
mode system (mean r= 0.042, p < 0.001 after Bonferroni
correction for multiple comparisons, t(1206)= 20, 95% CI:
[0.038, 0.046]; Fig. 1c left), while subnetwork (B) is negatively
connected with the default-mode system (mean r=−0.082, p <
0.001 after Bonferroni correction for multiple comparisons, t
(1206)=−27, 95% CI: [−0.088, −0.076]; Fig. 1c right). Using a
multilevel model, we found that these correlations are signifi-
cantly different (β=−0.12469, p < 0.0001, t(1769)=−37.4,
SE= 0.0033272, n= 2414).

To further unpack these findings, we also considered the
relation between these two subnetworks and the dorsal attention
system, which has been described as antagonistic to the default-
mode system in working memory tasks9,10,19. Consistent with this
account, we found that the activity of subnetwork (A) was
negatively correlated with the activity of the dorsal attention
system (mean r=−0.014, p < 0.001 after Bonferroni correction
for multiple comparisons, t(1206)=−7.22, 95% CI: [−0.18,
−0.11]; Supplementary Fig. 9A, right), while the activity of
subnetwork (B) was positively correlated with the activity of the
dorsal attention system (mean r= 0.12, p < 0.001 after Bonferroni
correction for multiple comparisons, t(1206)= 39, 95% CI: [0.11,
0.12]; Supplementary Fig. 9A, left). Using a multilevel model, we
found that these correlations are significantly different (β=
0.13057, p < 0.0001, t(1769)= 46.8, SE= 0.0027885, n= 2414).

Given that subnetwork (B) is functionally connected to the
dorsal attention system, it is interesting to ask whether subnet-
work (B) should be considered a formal part of the dorsal
attention system during this task. Likewise, it is interesting to ask
whether subnetwork (A) should be considered part of the default-
mode system during this task. To address this question, we
calculated the difference between (i) the strength of functional
connections within subnetwork (B) and (ii) the strength of
functional connections between subnetwork (B) and the dorsal
attention system. We calculated this difference 10,000 times,
bootstrapping over subjects, and found that regions within
subnetwork (B) were more strongly connected to each other than
to the dorsal attention system (p < 0.001). Performing an
analogous experiment, we found that regions within subnetwork
(A) were more strongly connected to each other than to the
default-mode system (p < 0.001). In other words, subnetwork (A)
appears to be functionally distinct from the default-mode system,
and subnetwork (B) appears to be functionally distinct from the
dorsal attention system. For the results of complementary
analyses identifying and characterizing genetic differences
between subnetworks, see Supplementary Note 7.

To address the final proposition in our model, we sought to
determine whether increased subnetwork (A) activity would lead
to a stronger positive functional connection between the
frontoparietal and default-mode systems, while increased subnet-
work (B) activity would lead to a stronger negative functional
connection between the two systems. Because the summation of
the subnetwork timeseries should reflect the complete frontopar-
ietal timeseries, we also reasoned that when subnetwork (A) is
more active (higher amplitude) relative to subnetwork (B), the
frontoparietal signal would be more similar to the dynamics of
subnetwork (A) than to the dynamics of subnetwork (B). To test
these expectations, we began by quantifying subnetwork activity
using the root mean square (RMS) of the subnetwork timeseries.
We then used a single robust linear model to explain the strength
of the functional connection between the default-mode and
frontoparietal systems by a linear combination of the activity of
subnetwork (A) and the activity of subnetwork (B). Consistent
with our hypothesis, we found that an increase in subnetwork (A)
activity corresponded to a stronger positive functional connection
between the two systems (estimate of regression coefficient

β= 0.006535, 95% CI: (0.00519, 0.00788), p < 0.001, t(1204)=
9.54, Fig. 1d), while an increase in subnetwork (B) activity
corresponded to a stronger negative functional connection
between the two systems (estimate of regression coefficient β=
−0.0112, 95% CI: (−0.01273, −0.0097), p < 0.001, t(1204)=
−14.3, Fig. 1e). In a complementary analysis, we used a single
robust linear model to explain the strength of the functional
connection between the dorsal attention and the frontoparietal
systems by a linear combination of the activity of subnetwork (A)
and the activity of subnetwork (B). We found that an increase in
subnetwork (A) activity corresponded to a stronger negative
functional connection between the two systems (β=−0.00553,
p < 0.001, t(1204)=−8.717, 95% CI: (−0.00677, −0.00486)), while
an increase in subnetwork (B) activity corresponded to a stronger
positive functional connection between the two systems (β=
0.00989, p < 0.001, t(1204)= 13.7, 95% CI: (0.00848, 0.011316)).

The results of the three tests described above serve to validate
the formal structure of our model. Next, we turned to an
assessment of the relevance of this complex dynamical system for
behavior. Specifically, we had observed previously that behavioral
performance decreases as the correlation between the frontopar-
ietal and default-mode systems increases. Here, we seek to
explain that observation using the activity of the two
subnetworks. Because subnetwork (A) is positively related to
frontoparietal–default-mode connectivity, which is itself nega-
tively related to behavioral performance, we would expect
subnetwork (A) activity to be negatively related to behavioral
performance. Conversely, because subnetwork (B) is related
negatively to frontoparietal–default-mode connectivity, which is
itself negatively related to behavioral performance, we would
expect subnetwork (B) activity to be positively related to
behavioral performance. To probe these relationships, we fit a
single robust multilevel model with behavioral performance as the
dependent variable, and subnetwork (A) and subnetwork (B)
activity as independent variables. As expected, we found that
subnetwork (A) activity is negatively related to behavioral
performance (β=−0.00271, p < 0.001, t(1194)=−3.83, 95%
CI: (−0.0041, −0.00132)), and subnetwork (B) activity is
positively related to behavioral performance (β= 0.00273, p <
0.001, t(1194)= 3.40, 95% CI: (0.00115, 0.00430)). Finally, we
asked whether the functional connection between the frontopar-
ietal and the default-mode system accounts for the variance
in behavioral performance even after regressing out the effects
of the activity of subnetwork (A)? In other words, is the
relationship between functional connectivity and behavioral
performance just a natural consequence of subnetwork (A)
activity, or does it provide additional explanatory power for
the behavior? To address this question, we fit a robust linear
mixed-effect model using behavioral performance as the
dependent variable, and both subnetwork (A) activity and
frontoparietal–default-mode connectivity as independent vari-
ables, and we found that the behavior–connectivity relationship
remained significant (estimate of regression coefficient for
connectivity: β=−0.254, p < 0.001, t(1194)=−9.84, 95% CI:
(−0.3047, −0.2034), estimate of regression coefficient for
subnetwork (A) activity: β=−0.00056, p= 0.004, t(1194)=
−2.66, 95% CI: (−0.00098, −0.00014)). This result suggests that
the frontoparietal–default-mode functional connection explains
additional behavioral variance beyond what is explained by the
activity of subnetwork (A) alone.

The structural role of the frontoparietal subnetworks. We next
turn to an examination of what, if any, neuroanatomical support
exists for the subnetwork-driven dynamics espoused in the pre-
vious section. Recent advances in network control theory have
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posited that changes in the activation of single brain regions can
induce a propagation of activity along white matter tracts to affect
distributed circuit behavior in a predictable fashion15,20. Here, we
test this notion within the specific confines of our experiment,
asking: does the structural connectivity of frontoparietal subnet-
works constrain how activity propagates to neighboring areas,
thereby modulating the coupling between the frontoparietal and
default-mode systems? We hypothesize that subnetwork (A) is
more structurally connected to the default-mode system, while
subnetwork (B) is more structurally connected to the dorsal
attention system. This hypothesis is based on evidence that a

higher number of white matter tracts between two regions can
support stronger functional connectivity between them21, allow-
ing subnetwork (A) to strongly couple to the default-mode sys-
tem, and subnetwork (B) to strongly couple to the dorsal
attention system.

We tested this hypothesis by calculating the strength of the
structural connectivity between subnetworks and systems using
diffusion imaging tractography (see “Methods”). Consistent with
our hypothesis, we found that subnetwork (A) is more strongly
connected to the default-mode system (mean= 2.07, p < 0.001
after Bonferroni correction for multiple comparisons, t(1206)=
173, 95% CI: (2.04, 2.09), Fig. 2a, left) than is subnetwork (B)
(mean= 0.676, p < 0.001 after Bonferroni correction for multiple
comparisons, t(1206)= 156, 95% CI: (0.668, 0.685), Fig. 2a right).
Using a multilevel model, we found that these correlations were
significantly different (β=−0.0013939, p < 0.0001, t(1769)=
−174.8, SE= 7.9759 × 10−6, n= 2414). Similarly, we found that
subnetwork (B) is more strongly connected to the dorsal attention
system (mean= 1.54, p < 0.001, t(1206)= 162, 95% CI: (1.52,
1.56), Fig. 2b, left) than is subnetwork (A) (mean= 1.03, p < 0.001
after Bonferroni correction for multiple comparisons, t(1206)=
146, 95% CI: (1.02, 1.04), Fig. 2b, right). Using a multilevel model,
we found that these correlations were significantly different (β=
0.00050413, p < 0.0001 after Bonferroni correction for multiple
comparisons, t(1769)= 99.3, SE= 5.0721 × 10−6, n= 2414).

In addition to the direct structural connections considered
above, indirect structural connections have been shown to
contribute meaningfully to functional connectivity, although to
a smaller extent than direct structural connections22. We
therefore examined the effect of indirect structural connections
in Supplementary Note 8.

Last, we considered whether these results may be partially
driven by spurious connections, and therefore assessed the
reliability of the results over a range of thresholds. The particular
method that we employ was previously designed to probe the
robustness of results to the elimination of weak connections23.
Specifically, we evaluated the effects reported in Fig. 2a, b when
eliminating the weakest 50%, 60%, 70%, 80%, and 90% of
connections. We found that the significance of the results shown
in Fig. 2a, b did not change at any of these threshold levels.
Interestingly, we found that the variance in strength of a
particular structural connection is related to the mean strength
of that connection (r= 0.9191, p < 0.0001), suggesting that the
results in Fig. 2a, b are not driven by noisy connections with high
variance.

Collectively, these data suggest that the frontoparietal subnet-
works might be well positioned in the structural connectome to
mediate coupling between the default-mode and dorsal attention
areas, a coupling that is negatively correlated with performance
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Fig. 2 White matter connectivity of the frontoparietal subnetworks.
a Subnetwork (A) is more strongly structurally connected to the default-
mode system (mean= 2.07, 95% CI: (2.05, 2.09)) than is subnetwork (B)
(mean= 0.676, 95% CI: (0.668, 0.685)). b Subnetwork (A) is less strongly
structurally connected to the dorsal attention system (mean = 1.03, 95%
CI: (1.02, 1.04)) than is subnetwork (B) (mean= 1.54, 95% CI: (1.52, 1.56)).
Note that for visualization purposes, the data were not visually adjusted to
account for two points coming from each subject, whereas the reported
statistics do take this into account. The insets of panels (a) and (b) display
the white matter fibers emanating from subnetworks (A) and (B),
respectively. c The anatomical distribution of boundary control calculated
with respect to the default mode and dorsal attention systems is
overrepresented in the frontoparietal system in comparison with a
nonparametric permutation-based null model.
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(Supplementary Fig. 15). To more directly test this notion, we
calculated the regional boundary control (Eq. 2) with respect to
the default-mode and dorsal attention systems (Fig. 2c). Of the 20
regions for which boundary control exceeded the 95th percentile,
9 were located in the frontoparietal system. To evaluate statistical
significance, we compared these results to those of a nonpara-
metric null model, in which we randomly permute the association
between boundary control values and brain regions. We found
that the probability that 9 or more of the top 20 regions fell
within the frontoparietal system was significant with respect to
the null model (p= 0.0019). In summary, these data suggest that
the frontoparietal system is structurally positioned to effectively
control the coupling between the default mode and dorsal
attention systems.

A dynamical model relating system activity and connectivity.
In the previous sections, we found evidence consistent with (but
not proving) the causal notion that increased activity of subnet-
work (A) drives stronger coupling between the frontoparietal and
default-mode systems, while increased activity of subnetwork (B)
drives anticorrelation between the two systems. While it is diffi-
cult to prove the validity of such a causal model in healthy human
participants, we can gather additional supportive evidence from
in silico experiments24 exercising a formal computational model
of the dynamical system. Specifically, we implemented a coarse-
grained dynamical model of a four-node network (Fig. 3a), where
each unit in the network represented one of the following four
human brain systems: default-mode, dorsal attention, and fron-
toparietal subnetworks A and B. The strength of system-level
structural connections was estimated by averaging the individual
edge strengths of node–node structural connections (Fig. 3a). In
order to model the oscillatory behavior of brain system activity,
we consider each unit in the network to be an oscillator, with
dynamics described by the normal form of a Hopf bifurcation,
and with frequencies randomly sampled from an empirically
measured distribution (see “Dynamical network model” for
details). We coupled the four nodes according to the mean weight
of the structural connections between them, as estimated from
diffusion tensor imaging tractography, averaged across subjects
(see “Methods”). The model has two free parameters: (i) the
global coupling parameter, which tunes the general capacity for
synchronization, and (ii) the bifurcation parameter of each
oscillator, which tunes the amplitude of the oscillator timeseries
(Supplementary Fig. 12). Following a broad parameter sweep, we
selected parameter values to ensure a realistic dynamical regime
between a state of no synchrony and a state of complete syn-
chrony among all oscillators (see “Methods” and Fig. 3b).

Next, we implemented the model to probe the relation between
subnetwork activity and connectivity, focusing initially on the
connectivity between the frontoparietal and default-mode
systems. In agreement with our empirical results, we found that
increasing the amplitude of subnetwork (A) activity increased the
correlation between the frontoparietal and default-mode unit
timeseries (Pearson’s correlation coefficient r= 0.396, p= 0.001,
Fig. 3c, top). Importantly, to ensure that our results are not
trivially explained by global changes in coupling, we subtract the
overall mean system coupling from the strength of the functional
connection between the frontoparietal and default-mode time-
series. Similarly, and again in agreement with our empirical
results, we found that increasing the amplitude of subnetwork (B)
activity decreased the correlation between the frontoparietal and
default-mode unit timeseries (Pearson’s correlation coefficient
r=−0.866, p < 0.00001, Fig. 3c, bottom). To determine the
relationship between the subnetworks, we initialized the dynamic
model 200 times, each time calculating the correlation between

the resulting timeseries for subnetwork (A) and subnetwork (B).
We found that the two timeseries were anticorrelated in 197 of
the 200 runs, suggesting that in this model, these two systems
tend to be anticorrelated (p= 0.015). To assess the reliability of
these results, we performed the same numerical experiments for a
range of coupling and bifurcation parameter values, across which
the effects remained robust (Supplementary Fig. 13).

Although we chose to begin with a simplified model setup that
allowed us to focus specifically on the interactions between the
four brain systems of interest in this study, it is crucial to be aware
that (1) each of these systems is actually composed of several
individual brain regions, and (2) these systems are part of a larger
whole-brain network composed of many other areas. In light of
these facts, it is important to determine whether the relationships
we found using the simple 4-unit system can be reproduced in
more complex and realistic network representations. To examine
this question, we implemented two complementary approaches: a
192- and a 400-unit network. In the 192-unit formulation, we still
considered only the four systems/subsystems examined in this
study, but rather than collapsing each system into a single node,
we represented each of the four systems at the resolution of the
400-region Schaefer parcellation. Specifically, subnetwork (A) was
represented by 30 nodes, subnetwork (B) was represented by 31
nodes, the default-mode system was represented by 79 nodes, and
the dorsal attention system was represented by 52 nodes. To
determine the effect of subnetwork (A) activity on the functional
connection between the frontoparietal and default-mode systems,
we initialized all non-subnetwork (A) oscillators at the same
activity, and varied the initial activity of subnetwork (A)
oscillators by tuning their bifurcation parameters as in the
simpler version of the model. This process was then repeated, but
for the case of varying subnetwork (B) activity. We found that we
were able to reproduce both of the above findings relating
subnetwork A and B activity to frontoparietal–default-mode
functional coupling at this finer scale (Fig. 3d). Notably, the two
above models assume that the four systems of interest exist in
isolation. To address this simplification, we built one final model:
to the 192-unit model, we added 208 other regions, hence
constructing a complete cortical representation. In this 400-unit
model, we were also able to recover the same relationships
(Fig. 3e).

Next, we examined the complementary relation between
subnetwork activity and the connectivity between the frontopar-
ietal and dorsal attention systems. Again, consistent with our
empirical results, we found that increasing subnetwork (A)
activity decreased the correlation between the frontoparietal and
dorsal attention unit timeseries (Pearson’s correlation coefficient
r=−0.216, p= 0.002; Supplementary Fig. 14A, right), and
increasing subnetwork (B) activity increased the correlation
between the frontoparietal and dorsal attention unit timeseries
(Pearson’s correlation coefficient r= 0.538, p < 0.0001; Supple-
mentary Fig. 14A, left). Importantly, we were able to reproduce
these results in the 192-unit model (Supplementary Fig. 14B).

Lending support to the notion that these dynamics may emerge
from the structural coupling of the oscillators, we attempted to
reproduce the results from Fig. 3a, b after eliminating all
structural connections between oscillators. We found that these
alterations eliminated both the relationship between subnetwork
activity and frontoparietal–default-mode connection strength for
both subnetwork (A) (r= 0.0707, p= 0.301) and subnetwork (B)
(r=−0.0707, p= 0.753). Collectively, this pattern of results
offers tentative support for a candidate mechanism, in which
subnetwork activity tunes functional connectivity. It is not known
how these results, originating from our in silico model
implementation, may relate to in vivo brain function. Our
findings serve to support the conceptual framework of our
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subnetwork hypothesis, but the putative causal structure
described above may not necessarily translate outside of this
computational model.

Discussion
Our findings suggest that, during engagement with a working
memory task, the frontoparietal system (and not the default-
mode system) may partially govern the functional connection
between the frontoparietal and default-mode systems. Relevantly,

the frontoparietal system is known to flexibly alter its functional
connections dynamically according to current task demands25,
perhaps controlling the strength of connectivity between cogni-
tive systems4. In order to support such a broad range of cognitive
states, it has been suggested that the frontoparietal system may be
composed of subnetworks, where each subnetwork subserves a
specific cognitive state17,26. Mechanistically, one possible expla-
nation for how the frontoparietal system could drive itself to
be either correlated or anticorrelated with the default-mode sys-
tem is if it is composed of two disjoint subnetworks, where
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Fig. 3 A simplified model for studying the relationships between brain system activity and connectivity. a We constructed a dynamical model of a 4-,
192-, and 400-oscillator representation of either the four systems (default mode, DM; frontoparietal subnetworks, SN-A & SN-B; and dorsal attention, DA)
of interest (4- and 192-oscillator systems), or of the entire brain (400-oscillator system). Here, we show a representation of this oscillator network
consisting of the frontoparietal subnetwork (A), the frontoparietal subnetwork (B), the default mode system, and the dorsal attention system. The
remaining oscillators are not shown here representing all other regions of the brain used in the 400-oscillator model. b The network dynamics were
integrated out to a total time of 6min, consistent with the length of the empirical n-back scan. c Using four oscillators, increasing the amplitude of
subnetwork (A) activity, while keeping all others equal, caused an increase in the functional connectivity between the frontoparietal and default mode units
(Pearson correlation coefficient between unit timeseries: r= 0.396, p= 0.001), while increasing the amplitude of subnetwork (B) activity caused a
decrease in the functional connectivity between the frontoparietal and default mode units (Pearson correlation coefficient between unit timeseries: r=
−0.866, p < 0.0001). d Using 192 oscillators, increasing the amplitude of subnetwork (A) activity caused an increase in the functional connectivity
between the frontoparietal and default mode units (r= 0.753, p= 0.001), while increasing the amplitude of subnetwork (B) activity caused a decrease in
the functional connectivity between the frontoparietal and default mode units (r=−0.599, p < 0.0001). e Using 400 oscillators, increasing the amplitude
of subnetwork (A) activity caused an increase in the functional connectivity between the frontoparietal and default mode units (r= 0.453, p= 0.011), while
increasing the amplitude of subnetwork (B) activity caused a decrease in the functional connectivity between the frontoparietal and default mode units
(r=−0.394, p= 0.031). Note that panel (e) contains the results of 30 simulations, in contrast to the 200 simulations depicted in panels c and d; this
difference is due to the marked increase in computational burden in the 400-oscillator model.
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subnetwork (A) displays activity that is correlated with the
activity of the default-mode system, and where subnetwork (B)
displays activity that is anticorrelated with the activity of the
default-mode system. Using an unsupervised clustering algorithm
informed by an explicit model of network architecture, we
demonstrated that the frontoparietal system is decomposable into
two subnetworks with distinct patterns of functional connections.

Prior work by Dixon and colleagues has found a similar divi-
sion of the frontoparietal system17. The authors employed a
hierarchical clustering method to establish a data-driven partition
of the frontoparietal system into two components, the first
component being more functionally connected to the default
mode, similar to our subnetwork (A), and the second component
being more functionally connected to the dorsal attention system,
similar to our subnetwork (B). Our findings critically extend these
prior observations by providing evidence that by supporting
competition between the two systems, subnetwork (B) may be
critical to working memory performance, while subnetwork (A)
may be less involved in working memory, and more closely linked
with introspective processes. Importantly, while functional divi-
sions of the frontoparietal system have previously been put forth,
these divisions have not yet been used to motivate a mechanistic
understanding of competition between brain networks. In our
mechanistic framework, this finding provides a possible expla-
nation for how the frontoparietal system may independently and
partially govern the functional connection between the fronto-
parietal and default-mode systems, enabling competition between
the two systems (which itself is correlated with individual dif-
ferences in performance). Thus, behavioral performance is related
to competition, and competition is driven by the activity of
frontoparietal subnetwork (B), which is anticorrelated with the
default-mode system. Broadly, these results indicate that specific
network interactions subserving certain types of human cognition
may be driven by just the dynamics of a subnetwork of one
(rather than both) of the involved networks.

In addition to their functional distinguishability, we also
demonstrated that these two subnetworks displayed distinct
patterns of gene coexpression. In line with this observation, it is
interesting to note that prior work has suggested that cortical
regions responsible for different cognitive functions can express
different genes27, and that gene coexpression provides a partial
explanation for patterns of functional connectivity28. In agree-
ment with these findings, our results demonstrate more similar
patterns of gene expression within subnetworks than between
subnetworks, an effect that cannot be explained by interregional
distance. Notable prior work has also suggested a link between
structural connectivity and gene expression29, also supported by
our finding that the two genetically dissimilar subnetworks dis-
play differing patterns of white matter connectivity. It is inter-
esting to speculate that these genetic dissimilarities are partially
responsible for the subnetworks’ differential capacity to tune the
coupling between the frontoparietal and default-mode systems via
relative changes in activity amplitudes. In summary, the fronto-
parietal system is decomposable into two discrete, nonoverlap-
ping functional subnetworks: subnetwork (A) is functionally
aligned with the default-mode system, and subnetwork (B) is
functionally opposed to the default-mode system. This arrange-
ment of two subsystems in functional opposition suggests a
possible mechanism by which the functional connection between
the frontoparietal and default-mode systems can be modulated:
namely, the alteration of relative activity levels across subsystems.
Furthermore, individual differences in this functional opposition
between the two subnetworks may underlie individual differences
in working memory performance.

Above, we established that frontoparietal subnetwork (B) is in
functional competition with the default-mode system, and

the activity of this subnetwork may drive competition between
the frontoparietal and default-mode systems. Next, to expand
our mechanistic understanding, we sought to explore why sub-
nework (B) is a driver of competition, while subnetwork (A) is a
driver of cooperation. Motivated by prior work demonstrating
that structural and functional connectivity share topographic
similarities21,30, we extend our study to multimodal data to better
understand the potential structural drivers constraining the
manner in which activity in frontoparietal subnetworks impinges
on functional coupling in other systems. We found that subnet-
work (A) had fewer structural connections to the dorsal attention
system than it had to the default-mode system, and also than
subnetwork (B) had to the dorsal attention system. Similarly, we
found that subnetwork (B) had fewer structural connections to
the default-mode system than it had to the dorsal attention sys-
tem, and also than subnetwork (A) had to the default-mode
system. Mechanistically, these data suggest that structural con-
nectivity may play a role in constraining the functional dynamics
of the two subnetworks. To better understand this role, we draw
on tools from network control theory, which provides an addi-
tional mechanistic framework to link network structure to func-
tional network dynamics15,31,32. Regions with high levels of
boundary control are theoretically posited to have the capacity to
steer the brain to different states by coupling and decoupling
cognitive systems15. Our results demonstrate that the frontopar-
ietal subnetworks are situated within the white matter archi-
tecture in a manner that can drive the system’s coupling with the
dorsal attention and default-mode systems. The effective activity
of this hub of network control may be cognitively advantageous
by, during externally directed tasks, buffering the attentional
systems from the internally directed processes of the default-
mode system, and likewise during internally directed tasks buf-
fering the default-mode system from external stimuli. In sum-
mary, the structural coupling of the subnetworks mirrors the
functional coupling of the subnetworks, suggesting that large-
scale white matter tracts might support the functional con-
nectivity observed during this task. Furthermore, subnetwork (B)
may be an efficient driver of competition between the fronto-
parietal and default-mode systems due to its position in the white
matter scaffolding.

We proposed a model wherein the competitive coupling
between the frontoparietal and default-mode systems is modu-
lated by activity levels in the oscillatory dynamics of two fron-
toparietal subnetworks. To test the validity of this putative
mechanism, we employed a simplified dynamical model of brain
system activity using oscillators coupled by empirically deter-
mined structural connectivity33–35. This model allowed us to
directly test our hypotheses by allowing us to alter subnetwork
amplitude, and subsequently to observe the resulting synchroni-
zation (functional connectivity) between the frontoparietal and
default-mode systems. The results from these simulated experi-
ments agree with our hypotheses, and demonstrate that the
modulation of subnetwork amplitude governs intersystem cou-
pling in a way that matches the empirical discoveries. This finding
provides one possible mechanistic explanation for our results: the
frontoparietal system may mediate the effective functional cou-
pling between the dorsal attention and default-mode systems.

It has been proposed that the frontoparietal system is func-
tionally interposed between the dorsal attention and default-
mode systems, altering their functional coupling in a task-specific
manner. In particular, during externally directed tasks, the
frontoparietal system may engage with the dorsal attention sys-
tem and disengage with the default-mode system36. Conversely,
during internally directed tasks, the frontoparietal system disen-
gages with the dorsal attention system, and engages with the
default-mode system19. Together, these complementary processes
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are thought to effectively segregate external stimuli from internal
trains of thought during tasks that require more focus on one of
the two. Our results demonstrate that this complementarity can
be reproduced in an oscillator model via the differential activation
and deactivation of oscillator groups representing two fronto-
parietal subnetworks. Indeed, our results suggest that increasing
the oscillation amplitude of oscillators representing subnetwork
(A) activity synchronizes the frontoparietal oscillator group with
the default-mode oscillator group, and increasing the oscillation
amplitude of oscillators representing subnetwork (B) desyn-
chronizes the frontoparietal oscillator group with the default-
mode oscillator group.

These results suggest a putatively causal relationship between
activity and connectivity in silico; how these putative results may
relate to in vivo brain function requires further investigation. The
frontoparietal system is thought to flexibly reconfigure functional
connections with the dorsal attention and default-mode systems
in a task-dependent manner9, and our results offer evidence for a
mechanism by which this flexible reconfiguration may be
achieved. In summary, we found correlative results in fMRI data,
suggesting that subnetwork activities are related to the strength of
the functional connection between the frontoparietal and default-
mode systems. Specifically, increased activity in subnetwork (A) is
correlated with decreased strength of the frontoparietal–default-
mode connection; in contrast, increased activity in subnetwork
(B) is correlated with increased strength of the frontoparietal–
default-mode connection. Modeling these functional systems as
collections of oscillators, we observed that increasing the activity
of subnetwork (A) in silico decreases the strength of the
frontoparietal–default-mode connection, and increasing the
activity of subnetwork (B) in silico increases the strength of
the frontoparietal–default-mode connection. Although the oscil-
lator ensemble model is quite simple relative to the true system,
the results from the model lend support to a causal interpretation
of the above correlative findings.

Our study provides evidence for a mechanism by which the
dynamics of the frontoparietal system may drive working mem-
ory performance. Two distinct subnetworks within the fronto-
parietal system play a role in modulating the functional coupling
between the frontoparietal and default-mode systems during the
performance of an n-back working memory task, which may help
buffer the externally directed attentional system from internal
trains of thought, and lead to improved behavioral performance.
We found that the position of the two subnetworks within the
white matter scaffolding constrains the distinct function of each:
one is structurally tied to the dorsal attention system (and drives
the frontoparietal system into competition with the default-
mode system), and the other is structurally tied to the default-
mode system (and drives the frontoparietal system into coop-
eration with the default-mode system). We extend these
descriptive observations by building a computational model
instantiating and demonstrating the putative mechanism, and we
bolster our findings with corroborating differences in gene
expression in the two subnetworks. Together, our findings con-
tribute to a holistic view of working memory by linking activity,
functional connectivity, structural connectivity, and gene
expression, and present one way of understanding how these four
modes work in concert to support cognitive processes necessary
for working memory.

Methods
Imaging data acquisition and preprocessing. For each subject in the Human
Connectome Project (HCP) S900 release37, we extracted the task-based functional
magnetic resonance imaging data acquired during the performance of the n-back
working memory task, a resting-state functional magnetic resonance imaging scan,
a high-resolution anatomical scan, and a diffusion tensor imaging scan. In this

release, 644 subjects contained all four data types, all four resting-state scans, and
BedpostX diffusion data. Participants included 346 females, and the full sample had
a mean age (std) of 28.6 (3.68) years. No additional exclusion criteria were applied.
All analyses were performed in accordance with the relevant ethical regulations of
the WU-Minn HCP Consortium Open Access Data Use Terms. Informed consent
was obtained in writing from all participants.

The acquisition parameters for each data type are as follows. The parameters for
the acquisition of the high-resolution structural scan were TR= 2400 ms, TE=
2.14 ms, TI= 1000ms, flip angle= 8°, FOV= 224 × 224 mm, voxel size= 0.7-mm
isotropic, BW= 210 Hz/Px, and acquisition time= 7:40 min. Functional magnetic
resonance images were collected during both rest and task with the following
parameters: TR= 720 ms, TE= 33.1 ms, flip angle= 52°, FOV= 208 × 180 mm,
matrix= 104 × 90, slice thickness= 2.0 mm, number of slices= 72 (2.0-mm
isotropic), multifactor band= 8, and echo spacing= 0.58 ms. Diffusion tensor
images were collected with the following parameters: TR= 5520 ms, TE= 89.5 ms,
flip angle= 78°, refocusing flip angle= 160°, FOV= 210 × 180, matrix= 168 ×
144, slice thickness= 1.25 mm, number of slices= 111 (1.25-mm isotropic),
multiband factor= 3, echo spacing= 0.78 ms, and b vaues= 1000, 2000, and
3000 s/mm2.

We focused our analyses on data acquired during the n-back task, due to its
reliable recruitment of the executive system38. The working memory task was
presented at two different levels of difficulty: 0-back and 2-back. For both levels,
subjects were presented with a stream of images taken from the following four
categories: faces, places, tools, or body parts. The latter images presented body parts
that were whole (nonmutilated); no images contained nudity. In the 0-back
condition, subjects were meant to respond positively during every image
presentation. In the 2-back condition, subjects were meant to respond positively if
the present image was identical to the image presented two images previously. The
task was divided into two runs, each run being composed of eight task and two
fixation blocks39. Fixation blocks lasted for 15 s each. Each task block consisted of
ten trials, where a stimulus was presented for 2 s, followed by a 500-ms ITI (2.5 s in
total per trial)39. Each block begins with a 2.5-s cue, indicating the 0-back or 2-back
condition. During the 0-back condition, working memory loads are minimal.
Within each run, half of the task blocks used the 2-back paradigm, and half used
the 0-back paradigm. In addition, within a run, each stimulus type (images from a
single category) was presented in a different block. To estimate behavioral
performance, we calculated the accuracy of responses across all image categories
separately for 0-back and 2-back conditions. We chose to focus on accuracy due to
its interpretability4. However, we also considered d-prime38,40, and demonstrate
that our main results hold when using this metric in place of accuracy (see
Supplementary Note 3).

For both resting-state and task-based functional connectivity, CompCor, with
five principal components from the ventricles and white matter masks, was used to
regress out nuisance signals from the timeseries. In addition, the 12 detrended
motion estimates provided by the Human Connectome Project were regressed out
from the timeseries. The mean global signal was removed, and then timeseries were
band-pass filtered from 0.009 to 0.08 Hz. Finally, frames with greater than 0.2-mm
framewise displacement or a derivative root mean square (DVARS) above 75 were
removed as outliers. Sessions composed of greater than 50% outlier frames were
not further analyzed.

We chose to regress out the global signal from the timeseries because it has been
shown to remove motion signal and global scanner noise. We also note that the
mathematics of global signal regression does not necessitate a specific spatial
distribution of negative correlations41, and our claims regard the relative strengths
of connectivity between networks rather than their sign. Moreover, the processing
pipeline used here has been suggested to be ideal for removing false relations
between connectivity and behavior42. Finally, we note that our main results hold
when using wavelet coherence as a measure of functional connectivity (see
Supplementary Note 5); this measure is bounded between 0 and 1.

For the diffusion imaging, the Human Connectome Project applied intensity
normalization across runs, the TOPUP algorithm for EPI distortion correction, the
EDDY algorithm for eddy current and motion correction, gradient nonlinearity
correction, calculation of gradient b-value/b-vector deviation, and registration of
mean b0 to native volume T1w with FLIRT. BBR+bbregister and transformation of
diffusion data, gradient deviation, and gradient directions to 1.25-mm structural
space were also applied. The brain mask is based on the FreeSurfer segmentation.
The BedpostX (Bayesian Estimation of Diffusion Parameters Obtained using
Sampling Techniques) output was then calculated, where the “X” stands for
modeling crossing fibers. Markov Chain Monte Carlo sampling was used to build
probability distributions on diffusion parameters at each voxel. The process creates
all of the files necessary for running probabilistic tractography. Using the
Freesurfer recon-all data computed by the Human Connectome Project, the
fsaverage5 space cortical parcellation was registered to the subject’s native cortical
white matter surface, and then transformed to the subject’s native diffusion volume
space. From these data, we derived seeds and targets for probabilistic tractography,
which we ran with the FSL probtrackx2 algorithm using 1000 streams initiated
from each voxel in a given parcel.

We parcellated the brain into 400 discrete and nonoverlapping regions of
interest using the Schaefer atlas (fslr32k surface)43. Notably, the Schaefer atlas was
originally validated in the same HCP data that we study here, and it yields a
functional demarcation of both the default-mode and the frontoparietal systems.
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Of course, other functionally defined atlases exist, but they are less ideal for our
purposes for several reasons: the Power atlas44 does not provide full cortical
coverage, and the Gordon45 and Brainnetome46 atlases are of lower spatial
resolution, including 333 and 246 regions, respectively. The Schaefer atlas provides
an assignment of each region to one of 17 putative cognitive systems: two visual,
two somatomotor, two dorsal attention, two salience/ventral attention, one limbic,
three frontoparietal, three default-mode, and one temporoparietal system. To
ensure that the granularity of the data was consistent with the granularity of our
hypotheses, we collapsed these 17 systems into eight systems by combining
individual systems that belonged to the same cognitive system, that is, we
combined the two visual systems into a single system, the two somatomotor
systems into a single system, the two dorsal attention systems into a single system,
the two salience systems into a single system, the three frontoparietal systems into a
single system, and the three default-mode systems into a single system.

Analysis of functional magnetic resonance imaging data. We used the pre-
processed data to construct functional connectivity matrices reflecting functional
interactions between regions and systems. Specifically, we extracted processed
timeseries from each of the 400 regions in the Schaefer atlas (Fig. 4a). Next, we
calculated the Pearson correlation coefficient between each pair of regional time-
series (Fig. 4b). We chose to use the Pearson correlation to represent functional
connectivity due to its widespread use in the neuroimaging literature, as well as its
ease of interpretability47, but we also demonstrate robustness of our results to other
measures of functional connectivity in Supplementary Note 5. We collated all
interregional estimates of functional connectivity into a single 400 × 400 con-
nectivity matrix, Cf (Fig. 4c), which we then treated as the formal encoding of brain
function48. To be explicit, in this network representation, regions are represented
by network nodes, and functional connections are represented by weighted edges,
where the weight of the edge between node i and node j is given by the Pearson
correlation coefficient between the timeseries of region i and the timeseries of
region j. Finally, we averaged the estimates of functional connectivity within sys-
tems, and between pairs of systems, to construct a system-by-system connectivity
matrix (Fig. 4d).

To partition the frontoparietal system into two functionally disjoint groups, we
employed the weighted stochastic block model, which is a powerful community
detection method. This method is complementary to the more widely used
modularity maximization methods49, but is noted to have increased flexibility and
sensitivity to a more diverse set of network architectures50–53. Briefly, the weighted
stochastic block model is a generative model that places each of the N nodes of
network Cf into one of K communities. This placement is accomplished by finding
a network partition z 2 ZN´1 where zi∈ {1, 2,…, K}, zi denotes the membership of
node i, and Cf is an N ×N matrix encoding pairwise functional connections.
Assuming that network edge weights are normally distributed, following Refs. 54,51,
the generative model takes the following form:

P Cf z; μ; σ
2

��� � ¼
YN
i¼1

YN
j¼1

exp Cf;ij �
μzizj
σ2zizj

� C2
f ;ij

2σ2zizj
�

μ2zizj
σ2zizj

 !
: ð1Þ

Here we have introduced model parameters μ 2 RK ´K and σ2 2 RK ´K , where μzizj
and σ2zizj parameterize the weights of normally distributed connections between

community zi and community zj, and Cf,ij denotes the ij-th element of the network
Cf. Furthermore, P Cf z; μ; σ

2jð Þ is the probability of generating the observed
network Cf given the parameters. This model is fit to Cf in order to estimate the
parameters z, μ, and σ2. We fit the model using MATLAB code provided in Ref. 54

and freely available at http://tuvalu.santafe.edu/aaronc/wsbm/.

For each subject, we fit the weighted stochastic block model to the m ×m
subgraph of the functional connectivity matrix representing functional connections
between the m= 61 regions of the frontoparietal system. We selected K= 2 a priori
due to prior evidence that the frontoparietal system can be separated into two
distinct components17. The implementation generated a single maximum
likelihood partition of regions into functional communities for each subject. Then,
we pooled partitions across subjects, and used a consensus similarity method18 to
identify a single partition that is most similar to all others, where similarity is
quantified by the z score of the Rand coefficient55. To assess the statistical
significance of this partition, we performed a nonparametric permutation test.
Specifically, for each subject, we calculated the log-likelihood of the weighted
stochastic block model fitting the final consensus partition to their individual
functional network. As a null, we calculated the log-likelihood of the weighted
stochastic block model fitting a random permutation of the final consensus
partition to their individual network. We assessed the difference between the true
and null data using a multilevel model (see “Statistical analysis”).

Analysis of diffusion tensor imaging data. After performing probabilistic trac-
tography, we applied the same 400-region Schaefer atlas. Next, we calculated the
proportion of streams seeded in a voxel in one region that reached another region.
We chose to use the proportion of streamlines to represent structural connectivity
due to the inhomogeneity of the region sizes. We collated all interregional estimates
of structural connectivity into a single 400 × 400 connectivity matrix, Cs, which we
then treated as the formal encoding of a network representation of brain structure48.
Similar to the model of brain function, in this structural network representation,
regions are represented by network nodes, and structural connections are repre-
sented by weighted edges, where the weight of the edge between node i and node j is
given by the proportion of streams seeded at region i that reach region j. Finally, we
averaged the estimates of structural connectivity within systems, and between pairs
of systems, to construct a system-by-system connectivity matrix, akin to the one that
we constructed from the functional data. In our analysis of these data, all structural
matrices were normalized by the total weight of all connections23.

We posited that structural connections between systems would play an important
role in the functional coupling between the frontoparietal and default-mode systems.
Specifically, we hypothesized that the formal nature of that role was one of boundary
controllability, more commonly studied in the field of control and dynamical systems
theory56. Boundary control is a quantifiable metric describing the notion that the
topological location of a region within a structural network partially governs that
region’s influence on the function of modules or communities in the network15,31.
Intuitively, if region i has strong structural connections to regions j and l, then the
activity of region i influences the functional connection between regions j and l.
Boundary control assesses the positioning of a region between two other regions, and
can be calculated for region i with respect to its control over regions j and l as follows:

BCðiÞ ¼
1� kiðjÞ

ki

� �2
� kiðlÞ

ki

� �2
for kiðjÞ þ kiðlÞ ¼ ki

kiðjÞ
ki

� �2
þ kiðlÞ

ki

� �2
for kiðjÞ þ kiðlÞ< ki

8><
>:

ð2Þ

Here, ki, the degree of region i, is the sum of all region i’s structural connections. The
variables ki (j) and ki (l) are the strength of region i’s structural connections to regions
j and l, respectively. A region with high boundary control is predicted to more
effectively modulate the functional connection between region j and region l, although
boundary control does not assess whether that modulation will increase or decrease
the connection strength. In summary, a region i with high boundary control with
respect to regions j and l—a feature of region i’s structural coupling—is theoretically
expected to effectively alter the strength of functional coupling between regions j
and l.

Pearson’s r = 0.7

Region 2 activity

R
eg

io
n 

1 
ac

tiv
ity P

earson correlation

Regions

R
egions

Systems

S
ystem

s

a b c d
Vis

SM
DA
VA

Lim

FP
DM

TP

1

0

–1

Fig. 4 Methodological schematic. a fMRI BOLD images from 644 subjects in the HCP S900 release were segmented into 400 regions to extract regional
mean timeseries. b We assessed the functional connectivity between each pair of regions by calculating the Pearson correlation coefficient between the
timeseries of region i and the timeseries of region j. c We encoded all pairwise functional connectivity estimates in a functional connectivity matrix, which
offers a formal representation of the network model under study. Each region was assigned to one of eight intrinsic functional systems defined a priori.
d From this assignment, we constructed a system-by-system functional connectivity matrix where each element indicates the average strength of all
functional connections for region pairs, in which one region of the pair is located in system i and the other region of the pair is located in system j. Systems
are color-coded and ordered from left to right (and from top to bottom) as follows: visual (Vis), somatomotor (SM), dorsal attention (DA), salience or
ventral attention (VA), limbic (Lim), frontoparietal (FP), default-mode (DM), and temporoparietal (TP).
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Gene coexpression analysis. To determine whether the two subnetworks that we
identified in the frontoparietal system displayed distinct patterns of gene expres-
sion, we used gene expression data from six postmortem brains available from the
Allen Brain Institute. We focused our analyses on 16,699 genes that had previously
been identified as relevant for brain function28. Data for these specific genes were
available in 338 of the 400 brain regions. We assigned the anatomical location of
each probe to one of 338 parcels defined a priori. For each parcel and each gene, we
calculated the mean expression of that gene across all probes, after subtracting the
mean expression of each probe for that gene57. Collectively, these calculations
generated a data matrix of size 338 (parcels) by 16,699 (mean expression across
probes in that parcel for a given gene).

Gene coexpression between parcel i and parcel j is measured by the Pearson
correlation coefficient r between gene expression values of parcel i and gene
expression values of parcel j. To assess subnetwork specificity of gene coexpression,
we first drew a bootstrap sample of 16,699 genes and constructed a 338 × 338 gene
coexpression matrix. Second, from this coexpression matrix, we calculated the
mean gene coexpression both within and between subnetworks. Between-
subnetwork coexpression is the mean of the gene coexpression values for pairs of
nodes for which one node in the pair is located in subnetwork (A) and the other
node in the pair is located in subnetwork (B). Third, we calculated the ratio of
within- to between-network gene coexpression, where a ratio >1 indicates greater
within-subnetwork coexpression than between-subnetwork coexpression. Finally,
we compute the difference between this ratio and a ratio expected in a
nonparametric null model. To construct the null model, we randomly permuted
subnetwork membership 1000 times, and recomputed coexpression ratios for each
permutation. The expected ratio of the null model is equal to the mean of the null
distribution. Each random sample of 16,699 genes generates a single index,
indicating whether the ratio of within- to between-network gene coexpression is
greater or less than what we expect from the above-described null model. Next, we
repeat the above process 10,000 times, selecting a different random sample of
16,699 genes each time, generating a distribution of differences, indicating whether
the true ratio is larger than the mean of the null model ratios. In total, this
algorithm provides us with a distribution of 10,000 indices, indicating whether the
ratio of within- to between-network gene coexpression is greater or less than we
would expect. To complete our statistical analysis, from this distribution, we
compute the probability of the difference being less than 0. For additional analyses
controlling for the distance between regions, see the Supplementary Information.

Dynamical network model. As motivated more fully in the “Results” section, we
propose that two subnetworks of the frontoparietal system work in functional
opposition to either couple or decouple the frontoparietal system from the default-
mode system. Specifically, we suggest that the functional connection between the
frontoparietal and default-mode systems is governed by the relative activation
amplitudes of the two frontoparietal subnetworks. To further probe these rela-
tionships, we built a coarse-grained network in which each unit represented a
particular brain system, and simulated system dynamics with a canonical coupled
oscillator model. More specifically, network activity was modeled by the normal
form of a supercritical Hopf bifurcation (also referred to as the Stuart–Landau
model), which describes the transition between a state of low activity and a state of
oscillatory dynamics58,59. We chose this model because (i) it permits the inde-
pendent manipulation of oscillator amplitudes (Supplementary Fig. 12), allowing
us to further investigate the empirically observed relationships between activity and
connectivity, and (ii) it is often used to model large-scale brain activity33–35,60,61.
Following Refs. 33,34, the local dynamics of the j-th unit are given by the following
equation:

duj
dt

¼ uj½aj þ iωj � jujj2� þ ξηjðtÞ; ð3Þ

where uj ¼ ρje
iθj ¼ xj þ iyj , ηj is drawn from a normal distribution to add

Gaussian noise to the system, and ξ scales the noise. In Eq. (3), the term aj is
commonly called the bifurcation parameter. When aj < 0, the system goes to a low-
activity fixed point and when aj > 0, the system obeys a stable limit-cycle solution
with angular frequency ωj and signal amplitude governed by aj.

Following Refs. 33,34, we model a network of interacting components by
separating the system into its real and imaginary parts, and we link different
components via the following set of coupled differential equations:

dxj
dt

¼ aj � x2j � y2j

h i
xj � ωjyj þ G

Xno
i¼1

Dij

�
xi � xj

�þ ξηjðtÞ; ð4Þ

and

dyj
dt

¼ aj � x2j � y2j

h i
yj þ ωjxj þ G

Xno
i¼1

Dij

�
yi � yj

�þ ξηj tð Þ: ð5Þ

Here, G is the coupling strength. As suggested by Ref. 34, we set ξ= 0.02, and we
took xj as the oscillatory signal of interest. To estimate the frequency parameters,
we empirically calculated the peak frequency for each subject of each oscillator
during the resting state, fit a normal distribution to the peak-frequency values, and
drew from the normal distribution. Similarly, to establish Dij, the coupling of the
network nodes, we calculated the mean structural connectivity estimated from

diffusion tractography between system i and system j across all subjects. We
integrated the equations using a time step of 0.01 s for 6 min, which was the
approximate length of the task scans. For a discussion of the effect of these
empirically derived parameters on model results, see Supplementary Note 10.

To estimate reasonable values for the coupling and bifurcation parameters, we
conducted a parameter sweep (Supplementary Fig. 11), and computed both the
root mean square of the timeseries, and the synchrony among all oscillators using
the Kuramoto order parameter, defined at time point t as

R tð Þ ¼ 1
no

Xno
j¼1

eiϕj tð Þ
�����

����� ð6Þ

where ϕj (t) is the instantaneous phase of oscillator j at time t, and no is the total
number of oscillators, which in our case is four (default-mode system, dorsal
attention system, frontoparietal subnetwork (A), and frontoparietal subnetwork
(B)). To get a summary statistic for the entire timeseries, we took the mean of R
across time (Supplementary Fig. 11). The instantaneous phase was computed by
taking the Hilbert transform of the unfiltered timeseries. As shown in
Supplementary Fig. 11, we focus on a subset of the parameter space, in which the
units exhibit oscillatory behavior. Notably, outside this subset, the units do not
display pronounced oscillatory behavior, but instead reach fixed points where their
dynamics do not change over time.

For our baseline working point, we selected a=−0.075 and G= 0.1 for all
units, where the Kuramoto order parameter has an intermediate value, signifying a
realistic dynamical regime between a state of no synchrony and a state of complete
synchrony among all oscillators. Furthermore, at this working point, the root mean
square of the timeseries is higher than the noise level (Supplementary Fig. 11). For
each point in our grid defined by a and G, we averaged results from ten
initializations of the system. During each system initialization, we drew new
frequency parameters from the fitted normal distributions described above.
Importantly, the bifurcation parameter of each oscillator is linearly related to the
root mean square of the time series values of that node (Supplementary Fig. 12B).

Statistical analysis. At several points throughout the study, we calculate the
statistical difference between outcome variables of the two subnetworks. To that
end, we initially take a parametric approach, and then we confirm all of our
findings using a nonparametric permutation-based approach. In all visualizations
of statistical relationships, subject effects have been regressed out from the
dependent variable. Last, we perform several pairs of statistical tests in which we
estimate the effect of a dependent variable on two independent variables in two
separate tests. All such tests pass Bonferroni correction for multiple comparisons.

In testing our hypotheses, we often asked questions of the following form: does
the strength of the connection between subnetwork (A) and the default-mode
system differ from the strength of the connection between subnetwork (B) and the
default-mode system? For questions of this form, we used a multilevel model where
each outcome variable (e.g., a measurement of connection strength) has attributes
encoding subnetwork membership, task run, and subject identity. The multilevel
model framework62 accounts for the nested nature of the data (multiple scans
nested within the subject). We specified the model as

OutcomeVariableit ¼ B0i þ B1iSubNetworkit þ eit ; ð7Þ
where OutcomeVariableit is the outcome variable (i.e., connection strength) for
person i on run t; B0i indicates the level of the outcome in subnetwork (A); B1i
indicates differences in the level of outcome associated with subnetwork (B) versus
subnetwork (A); eit are residuals.

Person-specific intercepts (from Level 1) were specified (at Level 2) as

B0i ¼ γ00 þ u0i; ð8Þ
and

B1i ¼ γ10; ð9Þ
where γ denotes a sample-level parameter and u0i denotes residual between-person
differences that may be correlated, but are uncorrelated with eit. Intuitively, this
constitutes a random-effect model, where we allow person-specific random
intercepts (specified by Eq. 8) in the main model (Eq. 7). The multilevel model was
fit with lme in R using maximum likelihood estimation. In the case of many
outliers, we treat our data with robust models, rather than standard linear models.
Robust models downweight points of data, where the most outlying points are
downweighted most severely. Specifically, we implement robust multilevel models
using robustlmm in R63. We note in the text whenever a robust multilevel model
is used.

Unless otherwise noted, we use a repeated measures correlation when
examining the association between two continuous variables64. The repeated
measures correlation accounts for nonindependence among observations (due to
multiple runs per subject) by using a form of analysis of covariance (ANCOVA) to
adjust for between-person variance. The model is specified as

Measure1it ¼ Measure2i þ Subjecti þ cðMeasure2iÞ þ eit ; ð10Þ
where Measure1it is the value of variable one for subject i during measurement
occasion t, Measure2i is the mean value of the second variable in the i-th
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participant, Subjecti is a unique identifier for each participant, and c(Measure2i) is
the covariate for the i-th participant and is equal to BðMeasure2it �Measure2iÞ,
where B is the slope coefficient of the covariate. Like a Pearson correlation
coefficient (r), the repeated measures correlation (rrm) is bounded between −1
and 1, and represents the strength of the linear association between two variables.
The repeated measures correlation was estimated using the rmcorr package in R64.

In addition to the multilevel linear model, we employ a complementary
permutation-based approach. We begin with vectors Y1 2 R1 ´ 2n, Y2 2 R1´ 2n , and
S 2 R1 ´ 2n , where n is the number of subjects, and each subject has participated in
two scanning sessions. We would like to test whether the difference in the means of
Y1 and Y2 is greater than expected in an appropriate statistical null model. Our null
hypothesis is that there is no difference between the means of Y1 and Y2. We
therefore use a nonparametric permutation-based null model in which we
randomly permute the assignment of vector elements in Y1 and Y2 to two new
vectors Y 01 and Y 02. Specifically, we individually visit each row i of the 2n rows,
where each row i corresponds to a specific session for a specific subject, and at
random, we either (1) swap the i-th element between Y1 and Y2, or (2) do not swap
the i-th element. This procedure results in a random permutation of the vector
assignment for each session for each subject. After the permutation process, we
calculate the mean difference between pairwise elements of the permuted vectors.
In order to generate a null distribution, we repeat the above permutation process
10,000 times. We determine a p value for the true effect by calculating the
proportion of null differences that are greater than the observed difference.

Methodological limitations. Several methodological limitations are pertinent to
this work. In this paper, the frontoparietal system was divided into two subnet-
works, creating group-level subnetworks. First, it should be noted that the sub-
networks could also have been studied at the level of single individuals, although
such granularity could hamper the ability to draw group-level conclusions. Second,
these subnetworks were defined using a community detection algorithm based on a
specific generative model. There exist several methods to find communities within
networks, each with its own set of underlying assumptions. As a result, careful
consideration must be taken when selecting the appropriate method of community
detection. The flexibility of the WSBM makes it the most reasonable choice, given
the data used here.

While the employed dynamical model indeed recovered empirical results, and
allowed us to postulate mechanistic explanations, it is important to point out some
of its methodological limitations. One limitation of our model revolves around the
scale at which it operates. In particular, because our main empirical findings
concern system-level dynamics—rather than dynamics at the scale of individual
neurons or parcels—we assumed, for simplicity, that the different units in our
computational model represented different brain regions. This coarse-grained
approach is beneficial for a number of reasons. For example, it simplifies our
analysis, and allowed us to focus explicitly on macroscopic, region-level drivers of
various results, and therefore directly compares output from the model to the
corresponding empirical findings. However, although informed by experimental
data, it is critical to acknowledge that such a setup is a great simplification of the
true system, and allows little room for understanding how observations at the level
of brain systems arise from interactions between more microscopic structural
components.

Along the same vein, the dynamics of each brain system were described
inherently phenomenologically, via a Hopf bifurcation model59, which has been
utilized in studies concerned with the interplay between network structure and
dynamics in general65,66, and also in computational studies on brain network
dynamics more specifically33–35. In particular, such dynamics indeed capture the
oscillatory nature of observed brain system activity, but do not embody a
biophysically precise description of neuronal activity. Therefore, the model cannot
attempt to describe the emergence of brain system dynamics from dynamical
processes on smaller scales. In the future, one may choose to employ an alternative
method of modeling, such as dynamic causal modeling67, which would allow for
probing other complementary and nuanced aspects of the proposed model.
Although in this investigation, we have chosen, as a first step, to employ a
canonical model with few parameters that favors simplicity and interpretability,
building and analyzing more realistic and detailed, multiscale models, is an
important area of ongoing research.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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