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Abstract 

The waxing and waning of negative affect in daily life is normative, reflecting an adaptive 

capacity to respond flexibly to changing circumstances. Here, we provide insight into facets of 

brain structure that may enable negative affect variability in daily life. We use diffusion 

spectrum imaging data from 95 young adults (Mage = 20.19 years, SDage = 1.80; 56 women) to 

construct structural connectivity networks that map white matter fiber connections between 200 

cortical and 14 sub-cortical regions. We apply network control theory to these structural 

networks to estimate the degree to which each brain region’s pattern of structural connectivity 

facilitates the spread of activity to other brain systems (i.e., the region’s average controllability). 

We examine how the average controllability of functional brain systems relates to negative affect 

variability, computed by taking the standard deviation of negative affect self-reports collected 

via smartphone-based experience-sampling twice per day over 28 days as participants went about 

their daily lives. We find that high average controllability of the cingulo-insular system is 

associated with increased negative affect variability. Our results highlight the role brain structure 

plays in affective dynamics as observed in the context of daily life.  

 

Keywords: affect variability, average controllability, depression, ecological momentary 

assessment, network control theory, cingulo-insular system  
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Controllability of structural brain networks and the waxing and waning of negative affect 

in daily life 

 Our lives are given meaning and color by our capacity to experience continuous and 

dynamically evolving affective responses. The dynamic nature of these experiences (Hollenstein, 

2015; Kuppens & Verduyn, 2017) has been documented in behavioral studies that densely 

sample self-reports of emotion in daily life (Eid & Diener, 1999; Frijda, 1986). These data show 

that affective variability is normative and is indicative of a capacity to respond flexibly to 

changing conditions (Brose et al., 2015; Kuppens et al., 2010; Merz & Roesch, 2011). Yet, there 

are important between-person differences in affect variability. At the extreme, individuals with 

depression report greater variability in negative affect relative to those without depression (Koval 

et al., 2013; Lamers et al., 2018; Peeters et al., 2006; Wichers et al., 2010), and greater variability 

predicts future affect disorder onset and episode recurrence (Houben et al., 2015; Ong & Ram, 

2017; Panaite et al., 2020; Wichers et al., 2010).  

 Between-person differences in affect variability likely stem from multiple sources and 

may be indicative of the individual, the context in which they are embedded, or the person-

context system as a whole (Koffer & Ram, 2015). Here, we focus on the association between 

brain structure and negative affect variability. The brain can be conceived of as a network of 

neuronal ensembles or regions (nodes) interlinked by anatomical wires (edges) in a complex and 

patterned architecture. This connective structure supports the dynamics of neural activity as the 

brain transitions through functional brain states, traversing a path in a dynamic state-space 

landscape (Gu et al., 2018; Figure 1). The trajectory of these brain state transitions is modulated 

by both external and internal perturbations (Bassett & Khambhati, 2017). The ease with which 

these internal perturbations – driven by activity in individual brain regions – modulate the brain’s 
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trajectory depends on the strength and pattern of structural connections associated with that 

region (Wu-Yan et al., 2018).  

To this end, some individuals may have structural brain network architectures that more 

easily facilitate changes in brain state trajectories than others, and as a consequence, they may 

show greater negative affect variability. In particular, we hypothesize that individuals with 

functional brain systems encompassing cingulate and fronto-insular regions that can more readily 

drive the brain into different states will exhibit greater negative affect variability. Our hypothesis 

stems from the fact that this cingulo-insular functional system facilitates access to cognitive 

control resources (e.g., attention, working memory) that coordinate behavioral responses 

appropriate to meet the demands of situations (e.g., studying; Menon, 2015; Uddin, 2015). This 

functional system facilitates access to cognitive control by engaging the frontoparietal system 

while suppressing default mode system activity (Bonnelle et al., 2012; Sridharan et al., 2008). 

Thus, by communicating with a distributed network of brain regions to coordinate behavior, this 

cingulo-insular system is essential to humans’ ability to respond adaptively to changes in the 

environment. Indeed, disruptions in this system are often associated with psychopathology 

(Hamilton et al., 2013; Liu et al., 2010; Manoliu et al., 2014). Given the cingulo-insular system’s 

role in recruiting other brain systems to facilitate changes in behavior, it is plausible that 

individuals with systems exhibiting a pattern of structural connectivity that facilitates the spread 

of activity from this system to other systems of the brain, and with the ability to drive the brain 

into different states, will show greater negative affect variability.  

To test this hypothesis, we used diffusion spectrum imaging data to construct structural 

connectivity networks that map white matter fiber connections between 200 cortical and 14 sub-

cortical regions and applied network control theory, a computational tool originating in the 
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engineering sciences, to these structural connections (Gu et al., 2015; Karrer et al., 2020). Using 

network control theory, we modeled the activity of all 214 brain regions using a linear model of 

dynamics. Specifically, within this framework, regional activity is simulated at each timepoint 

from a combination of regions’ prior activity, the structural connectivity between regions, and 

external control input (energy delivered over time by the model). We used this model to compute 

the average controllability of each brain region, which predicts the extent to which each brain 

region can distribute activity to other regions of the brain to drive the brain into easily reachable 

states with little input energy. Next, we tested the associations between average controllability of 

the cingulo-insular system and negative affect variability. We hypothesized that participants with 

high average controllability of this functional brain system would also have high negative affect 

variability. 

Results 

  Following well-established methods (Eid & Diener, 1999), we operationalized negative 

affect variability by taking the intraindividual standard deviation of up to 56 reports (2 per day 

for 28 days) of current negative affect in 95 (Mage = 20.19, SDage = 1.80; 56 women) participants 

(see Methods for greater detail on participant characteristics). Participants with higher negative 

affect variability showed a greater range in their negative affect across time relative to 

participants with lower negative affect variability (Figure 2).  

Average controllability of the cingulo-insular system is positively associated with negative 

affect variability 

 To determine the extent to which average controllability of the cingulo-insular system is 

associated with between-person differences in the variability of their self-reported negative 

affect, we constructed structural connectivity networks from diffusion spectrum imaging data in 
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the same 95 participants and computed the average controllability of all nodes in the brain for 

each participant (Figure 1). We took the mean average controllability of nodes within each of the 

17 functional systems (Schaefer et al., 2018; Yeo et al., 2011), including the cingulo-insular 

system, to create system-level average controllability indices. We ran multilevel models to assess 

the association between average controllability, running separate models for the mean average 

controllability within each of 17 systems and negative affect variability captured using up to 56 

self-reports collected over 28 days (outcome). We controlled for multiple comparisons given our 

examination of 17 systems using the Benjamini-Hochberg (1995) false discovery rate control. 

 We provide descriptive statistics and correlations of the variables used in the analyses in 

Supplemental Table 1. We found that average controllability of the cingulo-insular system 

(labeled Salience/Ventral Attention A in the Yeo et al., 2011 atlas; nodes included in this 

functional system are listed in Supplemental Table 2 and associations between these nodes and 

neurosynth meta-analysis maps are listed in Supplemental Table 3) was positively associated 

with greater negative affect variability (b = 9.57, p = 0.01, q = 0.03, Cohen’s d = 0.57; see 

Supplemental Table 4, Figure 3). Notably, this association was observed when controlling for 

covariates, including total brain volume, in-scanner motion, and average negative affect. We 

included average negative affect to ensure the association was specific to variability and not 

confounded with average negative affect (Eid & Diener, 1999), given that higher average self-

reported negative affect was positively associated with negative affect variability (b = 0.13, p = 

0.004, Cohen’s d = 0.65, see Supplemental Table 4).  

 To determine the specificity of the association between average controllability of the 

cingulo-insular system and negative affect variability, we ran multilevel models to assess the 

association between average controllability and average negative affect, computed as each 
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individual’s mean negative affect across the 56, twice-daily reports. We found no associations 

between average controllability and average negative affect (p’s ≥ 0.11). We additionally 

examined the extent to which our results were specific to average controllability by computing 

the average strength and clustering coefficient (two commonly used network indices) of the 17 

functional brain systems. No associations between negative affect variability and these additional 

network measures reached statistical significance (see Supplemental Analyses).  

Average controllability of the cingulo-insular system promotes normative negative affect 

variability 

 In follow-up analyses, we tested the extent to which the observed association between 

average controllability of the cingulo-insular network reflects normative variation in negative 

affect variability versus variability that may place individuals at risk for psychopathology. In line 

with previous work (Chan et al., 2016; Kashdan & Rottenberg, 2010; Waugh et al., 2011), a 

multilevel Poisson regression revealed that greater negative affect variability related to the 

presence of more depressive symptoms as measured by the Center for Epidemiological Studies-

Depression Scale (CESD; b = 0.09, p = 0.01, Supplemental Figure 1). However, there was little 

evidence that average controllability of the cingulo-insular system was statistically significantly 

associated with depressive symptoms (b = 0.37, p = 0.09, d = 0.22), indicating that negative 

affect variability was unlikely to mediate the association between controllability of this 

functional system and depressive symptoms. Finally, when depressive symptoms were included 

as a covariate in a regression model testing the association between controllability of the cingulo-

insular system and negative affect variability, average controllability of the cingulo-insular 

system remained associated with negative affect variability (b = 8.42, p = 0.03, Cohen’s d = 

0.50; see Supplemental Table 5).  
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Discussion 

The nature and variability of our affective states are essential ingredients of health and 

well-being. Here, we sought to explore the structural organization of functional brain systems 

underlying between-person differences in the extent to which negative affect fluctuates during 

daily life. Addressing this issue is important because between-person differences in the 

variability of self-reported negative affect have been associated with depression (Koval et al., 

2013; Lamers et al., 2018; Peeters et al., 2006; Wichers et al., 2010). To gain insight into the 

biological correlates of negative affect variability, we tested the hypothesis that individuals with 

cingulo-insular systems that have greater ability to facilitate the spread of activity to other brain 

systems (i.e., average controllability) will show greater negative affect variability in daily life. In 

line with this hypothesis, we found that average controllability of the cingulo-insular system is 

positively associated with greater negative affect variability.  

The association between average controllability and negative affect variability was 

specific to the cingulo-insular system. This suggests that this functional system may serve as a 

key control point in structural brain networks subserving affect dynamics in daily life. Such an 

interpretation is consistent with the cingulo-insular system’s unique role as a system that 

facilitates behavioral responses to detected events by signaling the engagement and suppression 

of other brain systems (Menon, 2015; Uddin, 2015). Due to having structural brain network 

architectures that facilitate the spread of activity from the cingulo-insular network to other 

systems, individuals with cingulo-insular systems with high average controllability may be more 

capable of changing their behavior when salient events are detected, which in turn manifests as 

greater negative affect variability when these changes in behavior are recorded over extended 

periods of time.  
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An additional finding of interest is that average controllability of the salience system was 

unrelated to daily-life average negative affect. This result indicates that having a cingulo-insular 

system with a pattern of structural connectivity that facilitates the spread of activity to other 

brain systems is implicated in experiencing greater variability in changing affective states rather 

than simply experiencing an overall greater intensity of negative affect. This specificity further 

speaks to the cingulo-insular system’s role in affect dynamics. Notably, the ability of the 

cingulo-insular network to engage with other systems of the brain to promote behavior change is 

often highlighted as a boon to promote cognitive, affective, and behavioral flexibility (Chen et 

al., 2016; Lydon-Staley et al., 2019). The current findings suggest that brain network structures 

that facilitate an especially strong influence of the cingulo-insular system on other brain systems 

promotes flexibility in affect.  

Importantly, follow-up analyses confirm previous work indicating that excessive negative 

affect variability is associated with greater symptoms of depression (Waugh et al., 2011). 

However, there was little evidence that this excessive variability, better conceptualized as 

affective lability (Harvey et al., 1989) and emotion dysregulation, was associated with average 

controllability of the cingulo-insular system. Instead, average controllability of the cingulo-

insular system was associated with normative variation in negative affect variability, in line with 

the systems role in cognitive and affective flexibility (Lydon-Staley et al., 2019). 

In sum, we find that between-person differences in the ease with which the cingulo-

insular system can drive the brain into different states is associated with between-person 

differences in negative affect variability as observed in daily life. These findings provide insight 

into the role of brain structure in everyday affective experiences and provide additional support 

for the cingulo-insular system as a key functional brain system involved in affective dynamics. 
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Methods 

 We used data from the Social and Health Impact of Network Effects (SHINE) study, a 

larger study designed to provide insight into health behaviors and social interactions among 

young adults. All research was conducted in accordance with the Institutional Review Board 

(IRB) at the University of Pennsylvania and Columbia University, in addition to the Army 

Research Office.  All data and code used in the manuscript are available at http://osf.io/gkahy/. 

The source code for the average controllability calculation is available at 

http://github.com/nangongwubu/Network-Controllability-Diagnostics. 

Participants and Procedure 

Recruitment materials advertised a study titled “Social Health Impact of Network Effects 

Study (SHINE)” to undergraduate students who were members of on-campus social groups 

across two universities, University of Pennsylvania and Columbia University. The study was 

advertised through flyers, university websites, and email communication. To reach campus 

groups, researchers contacted group leaders as points of contact and further employed a snowball 

sampling approach, such that participating students could share recruitment information with 

their peers who were members of on-campus social clubs or sports teams. Of 1024 individuals 

learning about the study and contacting the study team, 925 individuals were recruited into the 

study and invited to complete an initial consent form. These participants were asked for their 

consent to complete an online survey assessing functional Magnetic Resonance Imaging (fMRI) 

eligibility and an hour-long baseline survey. Participants who completed the consent form and 

agreed to take part in the study (n=583; 63.03% of invited participants) completed an fMRI 

screening form and a baseline survey. 

http://osf.io/gkahy/
http://github.com/nangongwubu/Network-Controllability-Diagnostics


BRAIN CONTROLLABILITY AND AFFECT   

 

 

12 

 

Following the baseline survey, participants meeting fMRI inclusion criteria and agreeing 

to participate in the next part of the study (n=112) were randomized into three conditions as part 

of a larger investigation unrelated to the current report: control (n=39), mindfulness (n=38), and 

perspective-taking (n=35). Participants attended a laboratory session that included surveys, an 

MRI session, and instructions for an ecological momentary assessment (EMA) and intervention 

(EMI) protocol designed to reduce alcohol use (findings are robust to controlling for intervention 

condition and, as such, we present the most parsimonious models without condition throughout 

this paper). The day following the laboratory session, participants began a 28-day ecological 

momentary assessment and protocol. The EMA and EMI was completed by 108 participants 

from 10 groups in the following conditions: control (n=37), mindfulness (n=37), and 

perspective-taking (n=34). Participants also completed 6-month and 12-month follow-up online 

surveys. Participants received up to $105 for participating in the study. Participants received a 

$20 Amazon gift card for completing the online baseline survey, $50 cash for completing the 

laboratory session, and a $55 Amazon gift card for answering at least 70% of ecological 

momentary assessments. We focus on the baseline survey, the MRI session, and the ecological 

momentary assessment and refer readers to http://osf.io/gkahy/ for greater detail about the rest of 

the protocol. 

 The participants reported on in this manuscript (see Supplemental Figure 2 for a CONSORT 

flow diagram of enrollment and retention through the study periods) comprise 95 young adults 

aged 18 to 28 years old (M = 20.19, SD = 1.80, 56 women). Participants identified as Asian 

(30.5%); Black or African American (2.1%); Latino/a (5.3%); white (52.6%); and as multiple 

categories: white, American Indian or Alaska Native (2.1%); white, Asian (3.2%); white, Asian, 

http://osf.io/gkahy/
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Native Hawaiian or other Pacific Islander (1.1%); and white, Latino/a (3.2%). Data collection 

began in February 2019 and ended in April 2020.  

MRI data acquisition, preprocessing, and modeling. Imaging data were acquired on 3-

Tesla Siemens Trio scanners equipped with a 64-channel head coil. The DWI data were 

preprocessed and reconstructed through QSIprep v 0.8.0 (Cieslak et al., 2020). Briefly, the data 

was first denoised and bias corrected, and then underwent susceptibility distortion correction, 

motion and eddy current correction via FSL 6.0, and coregistered to T1 space. We also warped 

both the Schaefer atlas (Schaefer et al., 2018) and the Harvard Oxford subcortical atlas (Smith et 

al., 2004) into individual T1 space to subdivide the brain into 200 cortical and 14 subcortical 

regions. Then, the preprocessed DWI data was reconstructed using generalized Q-sampling 

Imaging (Yeh et al., 2010) in DSI-Studio (http://dsi-studio.labsolver.org). Deterministic 

tractography (Yeh et al., 2013) was performed until 5 × 106 streamlines were reconstructed, 

yielding individual structural networks with brain regions as nodes and the number of 

streamlines connecting each brain region pair as weighted edges. Preprocessing was performed 

using QSIPrep 0.8.0, which is based on Nipype 1.4.2 (Gorgolewski et al., 2011, 2018; 

RRID:SCR_002502). 

Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for 

intensity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et al., 2010), and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped using 

antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as the target template. Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.1, 

RRID:SCR_004757; Avants et al., 2008), using brain-extracted versions of both T1w volume 

http://dsi-studio.labsolver.org/
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and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using FAST (FSL 6.0.3:b862cdd5, 

RRID:SCR_002823, Zhang et al., 2001).  

Diffusion data preprocessing. MP-PCA denoising as implemented in MRtrix3’s 

dwidenoise (Veraart et al., 2016) was applied with a 5- voxel window. After MP-PCA, Gibbs 

unringing was performed using MRtrix3’s mrdegibbs (Kellner et al., 2016). Following 

unringing, B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with the 

N4 algorithm (Tustison et al., 2010). After B1 bias correction, the mean intensity of the DWI 

series was adjusted so all the mean intensity of the b=0 images matched across each separate 

DWI scanning sequence. FSL (version 6.0.3:b862cdd5)’s eddy was used for head motion 

correction and Eddy current correction (Andersson & Sotiropoulos, 2016). Eddy was configured 

with a q-space smoothing factor of 10, a total of 5 iterations, and 1000 voxels used to estimate 

hyperparameters. A linear first level model and a linear second level model were used to 

characterize Eddy current-related spatial distortion. q-space coordinates were forcefully assigned 

to shells. Field offset was attempted to be separated from subject movement. Shells were aligned 

post-eddy. Eddy’s outlier replacement was run (Andersson & Sotiropoulos, 2016). Data were 

grouped by slice, only including values from slices determined to contain at least 250 

intracerebral voxels. Groups deviating by more than 4 standard deviations from the prediction 

had their data replaced with imputed values. Fieldmaps were collected with reversed phase-

encode blips, resulting in pairs of images with distortions going in opposite directions. Here, a 

b=0 fieldmap image with reversed phase encoding direction was used along with b=0 images 

extracted from the DWI scans. From these pairs, the susceptibility-induced off-resonance field 

was estimated using a method similar to that described in(Andersson et al., 2003). The fieldmaps 
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were ultimately incorporated into the Eddy current and head motion correction interpolation. 

Final interpolation was performed using the jac method. 

Several confounding time-series were calculated based on the preprocessed DWI: 

framewise displacement (FD) using the implementation in Nipype (following the definitions by 

Power et al., 2014). The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. Slicewise cross correlation was also calculated. The 

DWI time-series were resampled to ACPC, generating a preprocessed DWI run in ACPC space 

with 1.7 mm isotropic voxels. Many internal operations of QSIPrep use Nilearn 0.7.0 (Abraham 

et al., 2014; RRID:SCR_001362) and Dipy (Contributors et al., 2014). 

Ecological momentary assessment. On the day after the laboratory session, participants 

began a 28-day ecological momentary assessment period. Each day, participants answered two 

signal-contingent surveys per day. A morning survey was sent at 8:00 AM and an evening survey 

was sent at 6:00 PM. The surveys assessed affect, alcohol consumption, and a range of other 

variables (see http://osf.io/gkahy/ for codebook).  

Measures 

 We used participants’ reports of demographic information from the baseline surveys, their 

ratings of negative affect during the 28-day experience-sampling period, and diffusion spectrum 

imaging (DSI) to create structural brain networks. 

 Negative affect. Negative affect was measured every morning and evening in response to 

the question “How negative do you feel right now?” on a scale of 1 (not at all) to 100 

(extremely) in increments of 1. Out of a possible total of 5376 negative affect reports, 4982 

(92.7%) were available. Participants completed 18 to 56 affect reports (M = 52.44, SD = 6.56) 

across the experience-sampling period.  

http://osf.io/gkahy/
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 Average negative affect. Average negative affect was calculated using the intraindividual 

mean across each participant’s day’s negative affect reports (M = 37.38, SD = 14.29).  

 Negative affect variability. Negative affect variability was calculated using the 

intraindividual standard deviation across each participant’s day’s negative affect reports (M = 

17.88, SD = 6.44).  

 Depression. Depression was measured using the 10-item version of the Center for 

Epidemiological Studies-Depression Scale (CESD-10; Radloff, 1977). All items included four 

response categories indicating the frequency of depressive symptoms during the past week on a 

four-point scale of 0 (rarely or none of the time, less than 1 day), 1 (some or a little of the time, 

1-2 days), 2 (occasionally or a moderate amount of the time, 3-4 days), or 3 (most or all of the 

time, 5-7 days). The scoring of positive items is reversed and the possible range of scores is 0 to 

30 (Median = 9.78, SD = 5), with higher scores indicating the presence of more depressive 

symptoms.  

 Average controllability. From the DWI data, we constructed anatomical brain networks by 

subdividing the brain into 214 regions using the Schaefer atlas for 200 cortical regions and the 

Harvard Oxford atlas for 14 subcortical regions. In these anatomical connectivity matrices, brain 

regions are defined as nodes, and a link between two nodes represents the number of streamlines 

connecting them, normalized for density (Sotiropoulos & Zalesky, 2019).  

 We drew on Network Control Theory to assess the extent to which large-scale brain 

networks exert control over other large-scale brain networks. Controllability of a dynamical 

system describes the possibility of driving the current state of a system to a desired target state 

via external control input (Tang & Bassett, 2018). Such an approach allows us to gain better 

insight into the relationship between brain structure and brain dynamics. Here, we focus on 
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average controllability, which quantifies each region’s capacity to leverage the brain’s 

underlying structural connectivity to distribute activity throughout the brain to guide changes 

between easily reachable states (Gu et al., 2015). Networks with high average controllability are 

more influential in the control of network dynamics, driving the system into different states with 

little effort (i.e., input energy). The relationship of the mathematical formulation of network 

control to brain networks is discussed in more detail in Gu et al. (2015). To ensure system 

stability, each participant’s structural connectivity matrix was normalized by dividing each 

element by the largest absolute eigenvalue of the matrix plus one (Karrer et al., 2020). Following 

normalization, average controllability was calculated for each node. Next, rank-based inverse 

normal transformations were applied to each node across participants to ensure normality 

(McCaw et al., 2020). Finally, we calculated the mean average controllability over nodes within 

each of 17 functional brain systems (Schaefer et al., 2018; Yeo et al., 2011). These system-

averaged estimates of average controllability were taken into subsequent analyses of between-

person differences (see below for further details). 

Statistical Analysis 

 We tested the extent to which negative affect variability was associated with average 

controllability of 17 functional brain systems (Yeo et al., 2011) using 17 separate multilevel 

models, one for each system. We used multilevel models to account for the nested nature of the 

data (95 participants nested in 10 groups). We included average negative affect, total brain 

volume, and in-scanner motion as covariates. In all models, we specified a random intercept for 

group (as participants were nested in social groups). All analyses used the nlme package in R 

(Pinheiro, 2009). 
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2020). Here we sought to proactively consider choosing references that reflect the diversity of 

the field in thought, form of contribution, gender, race, ethnicity, and other factors. First, we 

obtained the predicted gender of the first and last author of each reference by using databases 

that store the probability of a first name being carried by a woman (Dworkin et al., 2020; Zhou et 



BRAIN CONTROLLABILITY AND AFFECT   

 

 

19 

 

al., 2020). By this measure (and excluding self-citations to the first and last authors of our 

current paper), our references contain 13.33% woman(first)/woman(last), 15.61% man/woman, 

15.0% woman/man, and 56.05% man/man. This method is limited in that a) names, pronouns, 

and social media profiles used to construct the databases may not, in every case, be indicative of 

gender identity and b) it cannot account for intersex, non-binary, or transgender people. We look 

forward to future work that could help us to better understand how to support equitable practices 

in science. 
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Figure Captions 

 

Figure 1. Construction of average controllability indices. A. Participants (n=95) underwent  

diffusion spectrum imaging. B. The resulting data underwent tractography to map white matter 

fiber streamline connections between 214 cortical and subcortical regions. C. The resulting 

structural brain networks consist of nodes (brain regions) connected by edges, links between 

nodes representing the number of streamlines connecting them, normalized for density 

(Sotiropoulos & Zalesky, 2019). D. Structural brain networks are analyzed in a network control 

framework (Gu et al., 2015; Manoliu et al., 2014; Parkes et al., 2021) to compute the structural 

support that network offers for moving the brain to easy-to-reach states following control input. 

Figures adapted from Parkes et al. (2021) and Tang et al. (2017).  

 

Figure 2. Between-person differences in negative affect variability. A. Participants provided up  

to 56 reports (two reports per day for 28 days) of their negative affect on their smartphones as 

they went about their daily lives in an ecological momentary assessment protocol. The time 

series of negative affect reports of two participants is shown in panels B and C. Both participants 

exhibit similar mean (M) values of negative affect across the 56 reports, as indicated by the black 

dashed line. However, the participant in panel C shows greater variability in their negative affect 

around their mean affect, relative to the participant in panel B as highlighted in grey. This greater 

negative affect variability is captured by the intraindividual standard deviation of the negative 

affect time series (SD). 

 

Figure 3. Greater average controllability of the cingulo-insular system is associated with greater  

negative affect variability. A. Multilevel models indicate that the strongest association, indicated 

by Cohen’s d, between negative affect variability and average controllability was observed in the 
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cingulo-insular system (labelled Salience/Ventral Attention A in Yeo et al., 2011). The 

association between average controllability and negative affect variability was only significant in 

the cingulo-insular system. B. Participants with higher average controllability values (x-axis; 

average of rank-based inverse normal transformed within each network within each individual) 

exhibited higher negative affect variability (y-axis) in their daily lives. Note that the association 

between average controllability and negative affect variability remains significant when the 

potential outlier on the left is removed. 
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