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Abstract

In demand of predicting new HIV diagnosis rates based on publicly available HIV

data that is abundant in space but has few points in time, we propose a class of

spatially varying autoregressive (SVAR) models compounded with conditional au-

toregressive (CAR) spatial correlation structures. We then propose to use the copula

approach and a flexible CAR formulation to model the dependence between adja-

cent counties. These models allow for spatial and temporal correlation as well as

space-time interactions and are naturally suitable for predicting HIV cases and other

spatio-temporal disease data that feature a similar data structure. We apply the

proposed models to HIV data over Florida, California and New England states and

compare them to a range of linear mixed models that have been recently popular

for modeling spatio-temporal disease data. The results show that for such data our

proposed models outperform the others in terms of prediction.
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1 Introduction

Human immunodeficiency virus (HIV) infections are life-changing events to those in-

flicted and if left untreated can lead to acquired immunodeficiency disease (AIDS).

The Centers for Disease Control and Prevention (CDC) has reported that although

nationally the number of newly diagnosed cases of HIV has declined by 19% in the

last decade, progress has been uneven. For example, some demographic groups, such

as African Americans, and some geographic regions, such as the south of the US, have

shown slower declines, if any, exhibiting consistently high HIV rates 3. Yet other re-

gions that were not traditionally affected have seen dramatic outbreaks, such as Scott

county, Indiana. Regional prediction of disease is central to orchestrating appropriate

public health responses. The National HIV/AIDS Strategy 4 identifies a key goal of

intensifying efforts in the communities with the greatest concentration of HIV cases.

Developing models to predict future diagnoses should allow health departments to

intervene before the surge in new diagnoses occurs. Although admittedly imperfect,

earlier intervention offers the possibility of reaching people living with HIV sooner,

and of improving health and decreasing infectiousness through timely treatment.

In this article, we will focus on the prediction of new HIV diagnosis rates at

the county level using publicly available data. It is well-known that the presence of

infection in a region is partly influenced by the social and economic demographics

and the prevalence of other sexually transmitted diseases (STD) in its population.

Known demographic variables linked to health disparities include but are not limited

to education, income, health-care access, sexual orientation, and ethnicity. However,

these covariates alone are insufficient to explain the entire variability in the HIV data.

After the effects due to the covariates are removed, the spread of infection across the

3http://www.cdc.gov/hiv
4https://www.aids.gov/federal-resources/national-hiv-aids-strategy/overview/
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U.S. still exhibits strong spatially and temporally varying patterns as values among

neighboring regions and time periods tend to be similar. It is therefore necessary

to have appropriate modeling techniques that incorporate both the variability due

to space-time dependencies and the variability due to covariates. Another major

challenge that comes with the prediction of HIV lies in the rarity of the disease, leading

to few to no incidents in many regions. This sparsity strongly encourages prediction

methods to take advantage of the spatial and temporal dependency structures so that

the statistical inference at one location can borrow strength from neighboring regions

in both space and time. All aforementioned challenges motivate us to investigate

efficient statistical models with the goal of predicting new HIV diagnoses.

Incidences of disease are most popularly modeled as Poisson or binomial random

variables with mean functions dependent on relative risk, expressed as the ratio of

observed risk to expected risk. The expected risk is calculated by standardizing the

observed number of people at risk in each combination of region and period by age,

gender or other categorization. This standardization can be performed either exter-

nally or internally, depending on whether the information retrieved for standardiza-

tion is from another data source or from within the given data. The relative risk is then

modeled through a link function, say, log or logit link function. Modeling of the trans-

formed relative risk at region i and period t, ηi,t, is the main goal of disease modeling.

This goal is usually achieved through an additive linear function which is essentially

the sum of linear effects from certain covariates and spatial/temporal/spatio-temporal

random effects. The spatial or temporal random effects may be viewed as surrogates

for unobserved regional or time-changing covariates.

Spatial dependence for aggregated disease incidence is most commonly modeled

through the conditional autoregressive (CAR) model. The intrinsic CAR (ICAR)

model proposed by Besag et al. (1991) has been widely used but it imposes restrictions
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on the correlation structure and is mainly appropriate for data with strong spatial

correlation. To make the model more flexible, Besag et al. (1991) proposed to combine

the ICAR model with an additional set of independent random effects to allow for a

range of correlation strengths. Cressie (1993) and Stern and Cressie (2000) proposed

to have a single set of random effects that still enables varying strengths of spatial

correlation to be captured. Leroux et al. (1999) modified Cressie (1993) to make it

more theoretically appealing by providing the explicit joint distribution of the spatial

observations. Later this model was used in MacNab (2003) to analyze intraventricular

hemorrhage incidence rates. Lee (2011) showed that among the above mentioned

models, Leroux et al. (1999) is preferable because it consistently produces the best

model fit across a large range of possible spatial correlation strengths.

Spatio-temporal disease models vary widely in their fashion of incorporating tem-

poral variability and its interactions with spatial variability. Bernardinelli et al. (1995)

and Sun et al. (2000) captured the spatially varying temporal trend using a linear

function of time with region-specific intercepts and slopes. Assunção et al. (2001)

incorporated an additional quadratic term in time to allow for curved trends. Alter-

natively, MacNab and Dean (2001, 2002) used B-splines to model the temporal trend

independently for each region such that the models share information in time but not

across space. Waller et al. (1997) and Xia and Carlin (1998) on the contrary built

independent spatial models for each time period. Although such a model is highly

flexible, it can quickly become high dimensional by treating each time point sepa-

rately. To make the temporal evolution less restrictive and to allow observations to

share information in both space and time, Knorr-Held (2000) proposed a generalized

linear mixed model framework with spatial and temporal main effects, modeled as an

ICAR and random walk respectively, as well as a possible space-time interaction term,

expressed as the Kronecker product of the main effects. Lagazio et al. (2003) and
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Schmid and Held (2004) extended this model by incorporating temporally varying

covariates, creating age-period-cohort models. Later, Nobre et al. (2005) proposed

a dynamic generalized linear mixed model by allowing both the fixed and random

effects to evolve over time. Mart́ınez-Beneito et al. (2008) proposed a multivariate

autoregressive model that uses a single, spatially-invariant parameter to estimate the

disease’s changing rate over time and used Besag et al. (1991) to capture the spatial

correlation in the innovations of the autoregressive model.

More recently, nonparametric methods have also become engaged in modeling

the dependencies in health and disease data. Cai et al. (2014) built a semiparametric

model with spatio-temporally varying regression coefficients which are further decom-

posed into fixed, spatially varying and temporally varying components. While the

temporally varying components are modeled through a dynamic model, the spatially

varying components are modeled via a nonparametric Dirichlet process. Motivated

by Knorr-Held (2000), Bauer et al. (2016) decomposed disease risk into purely spatial

and purely temporal components and a space-time interaction term. The space-time

interaction term is modeled via tensor product splines instead of as a product of the

main effects, thus reducing the complexity of the model. Ugarte et al. (2012) ap-

plied a similar additive structure to prostate cancer mortality data and modeled the

random effects using P-splines. Ruiz-Medina et al. (2014) proposed another nonpara-

metric approach to disease modeling by treating the risk of breast cancer mortality

as functional data.

While the majority of the aforementioned statistical spatio-temporal models

mainly focus on capturing the underlying pattern of disease risk and/or the asso-

ciation between the disease and environmental variables, our goal here is to make

predictions for disease rates. We propose a new class of spatially varying autoregres-

sive (SVAR) models for this purpose, and compare them to six competing models
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based on the popular additive modeling framework summarized in Knorr-Held (2000)

and additionally two spatially invariant autoregressive models. Our SVAR models

allow the temporal correlation to be location specific while still remaining parsimo-

nious so that the models are governed by only a few parameters. This is particularly

important for the HIV data presented here, because the data only has at most six

observations in time for each county, making the individual estimation of an au-

toregressive model for each county unaffordable. We will evaluate the prediction

capabilities of our models versus the additive models and spatially invariant models

by applying them to the HIV data over Florida, California and New England states.

This paper is organized as follows: Section 2 describes the data, Section 3 intro-

duces our SVAR models and presents the competing models, and Section 4 presents

the model comparison and prediction results. Finally, Section 5 provides a brief

discussion on the implications and possible extensions of the approaches explored.

Additional plots and all derivations are deferred to the Supplement.

2 Data

Annual new HIV diagnosis data from 2008 to 2014 at the county level across the

United States is available at AIDSVu.org. HIV rates are reported as the number of

cases per 100,000 people for a given county. In order to protect the privacy of indi-

viduals, HIV rates in a county may be suppressed in any of the following situations:

(1) a county has very few cases (< 5) or has a small population size (< 100), (2)

the state health department requested not to release its data to AIDSVu due to re-

release agreements with the CDC, and (3) there are no counties in the state such as in

Alaska, District of Columbia and Puerto Rico. Due to the rareness of the disease as

well as the confidentiality constraints, only 25% of all possible county-time observa-
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tions across the United States have new diagnoses available in the given time frame.

Figure 1 shows the sparsity of new diagnosis rates across the US in 2012. In this map,

negative rates indicate missing values. Hot spots seen on this map agree with reports

made by the CDC stating that the highest rates of diagnoses are in the South, the

West and the Northeast. For this reason, we focus on three concentrated areas of the

US: Florida with 67 counties and 75% of county-time observations available, Califor-

nia with 58 counties and 59% of county-time observations available, and the group of

seven New England states: Connecticut, Delaware, Maryland, Massachusetts, New

Jersey, New York, and Pennsylvania with 199 counties and 74% county-time obser-

vations available collectively.

General demographic annual summaries by county such as age, gender, sex at

birth, race, house-hold information, and population for the years 2007-2014 were ob-

tained from the United States Census Bureau. Other social and economic variables

such as education, marital status, income, and same-sex couple households are also

available from the American Community Survey run by the U.S. Census Bureau.

Since annual demographic data for all variables is only available for highly populated

counties, we use 3-year or 5-year averaged data to replace the missing annual or 3-

year averaged variables respectively. Prevalence of other STDs such as chlamydia

and syphilis are also available from healthindicators.gov. Although there are over 100

possible covariates from all demographic and prevalence data described above, past

research suggests that only a small fraction of social, economic, and disease variables

are significantly related to the spread of HIV. However, as not all variables currently

available have been previously investigated, we performed our own preliminary anal-

ysis for initial variable selection. We considered variables observed in the previous

year as covariates and using a step-wise regression procedure performed on all US

data available, we selected 28 significant variables. The relatively more significant co-
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variates include race, education level, activity level, chlamydia, and number of same

sex households, which are known to be related to the epidemic nature of the HIV

disease. The effects of these variables on HIV have also been shown in previous HIV

studies (e.g., Balaji et al., 2013 and Albarraćın et al., 2010).

3 Model development and comparison

Our goal is to make county level one year ahead predictions of new HIV diagnosis

rates based on the observed county level new HIV diagnoses and selected covariates.

The new HIV diagnoses is only observed from 2008-2014. For such a short time series,

a linear or quadratic temporal trend model may impose too strong an assumption.

We therefore choose an autoregressive model with order 1 (AR(1)) structure to model

the temporal correlation of each county. However, an obvious challenge with this data

set is that it is statistically unreliable to fit individual AR(1) models for each county

due to so few observed time points. Moreover, the evolution rates of neighboring

counties are likely similar so independent AR(1) models may fail to account for the

anticipated similarity among the autoregressive coefficients, ρ, in nearby or adjacent

counties.

In the exploratory data analysis we fit an AR(1) model for each county indepen-

dently and examined the spatial correlation of the estimated ρs. Figure 2 shows the

independent ρ estimates by county (only for counties with no more than 3 missing

years) and Table 1 reports both the Moran’s I and Geary’s C testing results. Both

tests provides strong evidence of spatial correlation for New England, weak evidence

for California, and no evidence for Florida, yet Figure 2 shows similar ρ estimates

among neighboring counties for all three regions. Compared to New England, the

testing results for Florida and California could be more influenced by the pattern of
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missing counties due to the smaller number of counties in these two states.

To accommodate the characteristics of the data and also ensure the model infer-

ence to be feasible, we propose to jointly model the individual evolution rates in each

county by modeling the county specific ρ as a spatially dependent random process

using the CAR model developed by Leroux et al. (1999). The choice of this CAR

model follows the argument in the Introduction. This SVAR modeling strategy has

several advantages: first, it allows for flexible county-specific autoregressive coeffi-

cients; second, it makes the estimation of an AR(1) model for each county reliable

by borrowing strength from neighbors since the spatial locations will essentially act

as “replicates” in the estimation; and third, it dramatically reduces the rank of the

model, easing the potential for overfitting.

3.1 Model formulation

Let Yi,t denote the new HIV diagnosis rate for county i = 1, ..., n at year t = 1, ..., T .

In general, disease modeling first approximates the distribution of raw counts using a

Poisson or binomial process with the mean defined as a function of the standardized

relative risk, and then focuses on modeling the relative risk strategically using linear

mixed models. These models can be put in the framework of generalized linear mixed

models (Breslow and Clayton, 1993). However, if the counts are sufficiently large then

some type of transformation can be used to attain the normality of the transformed

data (Waller et al., 1997). A transformation can be advantageous over Poisson or

binomial approximation because the Gaussian model for the transformed data can

allow for direct modeling of overdispersion in the data. Due to the sensitivity of

the data, rates below five are suppressed, ensuring that the majority of data are

sufficiently large and normality may be achieved by a transformation of Yi,t. For

our data, we found that a log transformation works well in transforming data to
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approximate Gaussian distribution, see Figures 1-4 in the Supplement. We therefore

first take a log transformation of Yi,t and then remove its global mean to obtain a

zero-mean Gaussian random process Zi,t.

We then focus on modeling Zi,t using Bayesian hierarchical models (BHMs). We

model Zi,t in the first level of the BHM as below:

Zi,t = ηi,t(β,θ) + εi,t, (3.1)

where ηi,t is a spatio-temporal random process governed by parameters β and θ. An

important feature of aggregated disease modeling is that the variance of Yi,t depends

on its corresponding population size, i.e., ni,t of county i at time t. To achieve

such variance specification, we specify ε ∼ N(0, σ2Q) in model (3.1), where Q is

an nT × nT diagonal matrix with the (it)th diagonal entry as qit = c/(ni,tYi,t) for a

constant c = 100, 000. The derivation for this particular form of Q can be seen in the

Supplement Section 2. At the second level, we model ηi,t using a SVAR model. The

basic form of our SVAR model is

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi(Zi,t−1 −XT

i,t−2β), (3.2)

where XT
i,t−kβ denotes the linear effects of the previous year’s covariates at county

i on Zi,t−k+1 for k = 1, 2, and ρi ∈ (−1, 1), i = 1, ...n, are spatially varying AR(1)

coefficients. The coefficient ψi,t =
√
qit/qi(t−1) is added to ensure that ρi measures

the correlation between two random components, because the variance of Zi,t is pro-

portional to qit.

Depending on the dependency structure in data, we may add additional random

effects to Model (3.2). For example, if the spatial correlation in ρi is not sufficient

to capture the dependency in Zi,t, we can add a spatial random effect term φi to the

model:

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi(Zi,t−1 −XT

i,t−2β) + φi, (3.3)
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or additionally a spatio-temporal interaction random effect δi,t:

ηi,t(β,θ) = XT
i,t−1β + ψi,tρi(Zi,t−1 −XT

i,t−2β) + φi + δi,t.

The spatially varying autoregressive models capture the space-time correlation, also

called spillover effects between neighbors, while the random effects can account for

spatial or spatiotemporal variability from either correlated or uncorrelated unknown

factors. Note that the major difference between Model (3.3) and Mart́ınez-Beneito

et al. (2008) is that we allow ρi to vary in space. Moreover, our spatial random effects

φ = (φ1, . . . , φn)T will be governed by the CAR model from Leroux et al. (1999)

rather than Besag et al. (1991) to capture a broader range of spatial correlation

strength. For all models considered throughout this paper, coefficients in β are given

independent normal priors.

3.2 Prior specification for ρi

The prior specification for ρi is challenging because the typical Gaussian CAR prior

is not applicable due to the truncated range of ρi. We therefore propose to model the

prior for ρi using a copula approach which enables modeling the marginal distribution

separately from the dependency structure. By this strategy we are able to model the

dependency of ρi using a Gaussian random field while still maintaining the flexibility

of choosing an approrpriate marginal distribution to respect the truncated nature of

ρi. We first define the joint cumulative distribution function (CDF) of ρ1, · · · , ρn

through a Gaussian copula model:

F (ρ1, · · · , ρn) = CΩ(U(ρ1), . . . , U(ρn)), (3.4)

where U(·) represents the CDF of the marginal distribution of ρi, and CΩ(·) is a

Gaussian copula with covariance matrix Ω defined by:

CΩ(u1, . . . , un) = ΦΩ(Φ−1(u1), . . . ,Φ−1(un)), (3.5)
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where ΦΩ(·) is the joint CDF of a multivariate Gaussian distribution with mean zero

and covariance matrix Ω, and Φ−1(·) is the inverse CDF of a standard normal random

variable.

Here we assume U(·) to be uniform(-1,1) for simplicity. This choice allows us to

simplify (3.4) into

F (ρ1, · · · , ρn) = CΩ

(
ρ1 + 1

2
, . . . ,

ρn + 1

2

)
.

With (3.5), we further have

F (ρ1, · · · , ρn) = ΦΩ

(
Φ−1(

ρ1 + 1

2
), . . . ,Φ−1(

ρn + 1

2
)

)
. (3.6)

Then the joint prior of ρ1, · · · , ρn is the density function corresponding to the joint

CDF in (3.6). Given that the density of the Gaussian copula in (3.5) is

cΩ(u1, · · · , un) =
φΩ(Φ−1(u1), . . . ,Φ−1(un))∏n

i=1 φ(Φ−1(ui))
,

where φΩ(·) is the density of ΦΩ(·) and φ(·) is the density of Φ(·), we obtain the prior

for ρ1, · · · , ρn as:

π(ρ1, · · · , ρn) =
φΩ

(
Φ−1(ρ1+1

2
), . . . ,Φ−1(ρn+1

2
)
)∏n

i=1
1
2
φ
(
Φ−1(ρi+1

2
)
) . (3.7)

In practice, we may replace 1 with 0.9999 and 2 with 1.9998 in (3.7) to avoid the

singularity issue at the boundary of ρi’s domain. The marginal distribution for ρi can

be assumed to be any other distribution defined on (-1,1), for example, a truncated

normal distribution. However, in such cases a more complex form of the prior π(·) will

be expected which may significantly increase the computational burden. Given no a

priori information for ρi the uniform distribution seems to be a reasonable choice.

Examples of using copula-based methods in a geostatistical setting can be seen in

Bárdossy (2006) and Kazianka and Pilz (2010). We choose the covariance matrix Ω
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in the Gaussian copula model to follow the structure of the Leroux et al. (1999) CAR

model with variance τ 2
ρ and spatial correlation parameter λρ:

Ω = τ 2
ρ [(1− λρ)I + λρR]−1, (3.8)

where R denotes a neighborhood matrix with the ith diagonal element as the total

number of neighbors for county i while the (i, j)th off-diagonal element being -1 if

counties i and j share a border and 0 otherwise. In Model (3.8), a smaller/larger λρ

indicates weaker/stronger spatial correlation with λρ = 0 corresponding to complete

spatial independence and λρ = 1 to the ICAR model.

Note Model (3.2) can also be extended to include a second order autoregressive

term if necessary, although this extension is not appropriate for our data due to

the very few time points available. With a spatially varying AR(2) model, we will

have both the first and second order coefficients, ρ1 = {ρ11, · · · , ρ1n} and ρ2 =

{ρ21, ..., ρ2n}, at n spatial locations. Taking into account the stationarity constraints

on each pair of (ρ1k, ρ2k) for k = 1, . . . , n, i.e., |ρ2k| < 1 and |ρ1k| < 1− ρ2k, we can

model the prior for (ρ1, ρ2) jointly using Gaussian copulas, CΩ1(·) and CΩ2(·), which

depend on covariance matrices Ω1 and Ω2 respectively. We assume marginals ρ2k ∼

uniform(-1, 1) and ρ1k|ρ2k ∼ uniform(ρ2k − 1, 1− ρ2k) for simplicity. The joint prior

can then be specified as

π(ρ1,ρ2) = π(ρ1|ρ2)π(ρ2),

where by (3.7),

π(ρ2) =
φΩ2

(
Φ−1(ρ21+1

2
), . . . ,Φ−1(ρ2n+1

2
)
)∏n

i=1
1
2
φ
(
Φ−1(ρ2i+1

2
)
) ,

and

π(ρ1|ρ2) ∼
φΩ1

(
Φ−1(ρ11+1−ρ21

2−2ρ21
), . . . ,Φ−1(ρ1n+1−ρ2n

2−2ρ2n
)
)

∏n
i=1

1
2
φ
(

Φ−1(ρ1i+1−ρ2i
2−2ρ2i

)
) .
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3.3 Other competing models

Most models developed for spatio-temporal disease aim at describing the disease

pattern and their dependency structure rather than at prediction. For example, the

spatio-temporal models in Knorr-Held (2000) as well as the models reviewed in López-

Qúılez and Muñoz (2009) are all proposed as generalized linear mixed models for the

purpose of disease modeling. These models mainly differ from our models in the

construction of ηi,t specified in (3.2). Below lists eight different forms of ηi,t that will

be compared to our SVAR models:

1. XT
i,t−1β,

2. XT
i,t−1β + φi,

3. XT
i,t−1β + αt,

4. XT
i,t−1β + δi,t,

5. XT
i,t−1β + αt + φi,

6. XT
i,t−1β + αt + φi + δi,t,

7. XT
i,t−1β + ψi,tρ(Zi,t−1 −XT

i,t−2β),

8. XT
i,t−1β + ψi,tρ(Zi,t−1 −XT

i,t−2β) + φi,

where XT
i,t−kβ, k = 1, 2 is the same as that in Model (3.2), φi denotes the spatial

random effect of county i, αt the temporal random effect of year t, and δi,t the space-

time interaction effect. Models 2 through 6 are constructed by adapting Knorr-Held

(2000)’s framework to our prediction priority and to make them more comparable to

our proposed models. Specifically, we replace its temporal random walk prior with

an AR(1) structure and its spatial effects prior following Besag et al. (1991) with

that of Leroux et al. (1999). These modifications add more flexibility to the models

as the strength of the temporal and spatial correlations in the data can be directly
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inferred by the correlation parameters in αt and φi, respectively. Models 7 and 8 are

specified as invariant autoregressive models across spatial locations, resembling those

in Mart́ınez-Beneito et al. (2008).

We specify the priors for φ = (φ1, ..., φn)T, α = (α1, ..., αT )T and δ = (δ11, ...δnT )T

as the following:

φ ∼ N(0,Σφ), α ∼ N(0,Σα), δ ∼ N(0,Σδ),

where Σφ follows the structure of the Leroux et al. (1999) CAR model:

Σφ = τ 2
φ [(1− λφ)I + λφR]−1,

where τ 2
φ denotes the effect variance and λφ ∈ [0, 1] the strength of the spatial cor-

relation. The covariance matrix Σα = τ 2
αρ

D
α is assumed to follow an AR(1) structure

with variance parameter τ 2
α, temporal correlation parameter ρα and T × T tempo-

ral distance matrix D. We specify Σδ as the Kronecker product of AR(1) temporal

correlation and Leroux et al. (1999) spatial correlation structures:

Σδ = τ 2
δ ρ

D
δ ⊗ [(1− λδ)I + λδR]−1,

where τ 2
δ is the variance parameter, ρδ and λδ denote the temporal and spatial cor-

relation parameters respectively. This indicates a separable space-time covariance

structure. A small caveat for Models 4 and 6 is that if ρδ and λδ are both zero, then

δi,t is indistinguishable from εi,t. Thus, in implementing Models 4 and 6, estimates of

ρδ and λδ should be carefully monitored.

3.4 Hyperpriors

The temporal and spatial correlation structures of the random effects are defined

through hyperparameters which will be estimated via MCMC sampling. The vari-

ance parameters, σ2, τ 2
α, τ

2
φ , τ

2
δ , and τ 2

ρ are all given a semi-conjugate inverse gamma
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hyperprior IG(a, b) and can be sampled via the Gibbs sampler. The correlation

parameters λφ, λδ, and λρ are given uniform(0,1) hyperpriors while ρα is given a

uniform(-1,1) hyperpriors and are each sampled via the Metropolis-Hastings algo-

rithm. For models that include the spatio-temporal random effects, δi,t, such as

Models 4 and 6, a stronger prior for the temporal correlation, ρδ, has to be specified

to attain convergence of the posterior samples. Specifically, a uniform(0, 0.9) prior is

used for ρδ as opposed to the uniform(-1, 1) used for ρα. This is possibly due to the

short time length of the data which makes it challenging to estimate the space-time

covariance structure.

Following Bernardinelli et al. (1995), we use more informative hyperpriors for the

variance parameters, which will help with the MCMC convergence in the case of sparse

data. We performed small experiments to evaluate the sensitivity of the model fitting

to the choice of hyperprior parameters using all three datasets studied here. We indeed

found the results to be insensitive to the choice of hyperprior parameters for the New

England dataset, the largest dataset among the three, whereas the more informative

hypepriors yield slightly better prediction results than the less informative ones for the

smaller datasets of Florida and California. Details on the sensitivity analysis can be

found in the Supplement Section 4. Bernardinelli et al. (1995) also demonstrated the

same conclusion on the sensitivity to hyperpriors, and more discussion on the choice

of hyperprior parameters is in Bernardinelli et al. (1995) and Best et al. (1999).

3.5 Prediction

Given the fitted model, it is straightforward to make predictions for the following

year. The prediction, Ẑi,t+1, is obtained by sampling from the posterior predictive

distribution through forward sampling. For example, with Model (3.3) we have for
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each iteration of the MCMC algorithm,

Ẑi,t+1 = XT
i,tβ̂ + ρ̂i(Zi,t −XT

i,t−1β̂) + φ̂i + ε̂i,t+1, ε̂i,t+1 ∼ N(0, σ̂2qit).

Note that for year t + 1 we do not expect to know qi(t+1) so we assume qi(t+1) = qit

and hence ψi,t+1 = 1, due to the relatively slow change over time of qit at each county.

This is verified in Figure 5 of the Supplement. For Models 3, 5, and 6, which include

temporal and spatio-temporal random effects, we first use forward sampling to sample

α̂t+1 and δ̂i,t+1 before computing Ẑi,t+1. For instance, predictions for Model 6 have

the form:

Ẑi,t+1 = XT
i,tβ̂ + α̂t+1 + φ̂i + δ̂i,t+1 + ε̂i,t+1,

where ε̂i,t+1 ∼ N(0, σ̂2qi(t+1)), α̂t+1 = ρ̂αα̂t + ε̂αt+1 where ε̂αt+1
iid∼ N(0, τ̂ 2

α(1− ρ̂2
α)), and

δ̂i,t+1 = ρ̂δδi,t+ ε̂δi,t+1 where (ε̂δ1,t+1, . . . , ε̂
δ
n,t+1)T ∼ N(0, τ̂ 2

δ (1− ρ̂2
δ)[(1− λ̂δ)In+ λ̂δR]−1).

Finally, posterior predictions in the original scale, Ŷi,t+1, are obtained by adding back

the detrended global mean of Ẑi,t+1 and then taking the exponential.

4 Prediction of HIV data

For each HIV dataset of Florida, California and New England states as described in

Section 2, we first compare Models (3.2) and (3.3) to all eight models in Section 3.3

by withholding the new HIV diagnosis rates in 2014 as testing data and using the

rates from 2008-2013 as training data. We then predict the new HIV diagnosis rates

in 2015 using the rates observed from 2008-2014 and based on our best performing

models.

4.1 Model assessment measures

We employ the mean squared prediction error (MSPE), the Gneiting and Raftery

(2007) adaptation of the predictive model choice criterion (PMCC) of Gelfand and
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Ghosh (1998), and the continuous rank probability score (CRPS) (Gneiting and

Raftery, 2007) to evaluate the prediction performance. Let yobs be the 2008-2013

observed HIV, let yk, k = 1, . . . , p be the observed county level HIV in 2014 where

p = 47, 33 and 112 for Florida, California and New England states, respectively, and

let Yk, k = 1, . . . , p denote the random variable of the HIV in 2014. We have

MSPE =
1

p

p∑
k=1

(ŷk − yk)2,

PMCC =

p∑
k=1

(ŷk − yk)2

V ar(Yk|yobs, θ̂)
+

p∑
k=1

log[V ar(Yk|yobs, θ̂)],

and

CRPS =
1

p

p∑
k=1

(EF |Yk − yk| −
1

2
EF |Yk − Y ′k|),

where Yk and Y ′k in CRPS are independent replicates sampled from the posterior

predictive distribution F . The latter two measures directly take advantage of the

posterior predictive distribution resulting from MCMC sampling. The PMCC is a

balanced loss function composed of two parts; the first part is interpreted as a measure

of the goodness of fit and the second as a predictive variance penalty term. CRPS

assesses how concentrated the predictive distribution is around the observed values.

As opposed to MSPE and PMCC measures, the CRPS evaluates the models based

on the entire predictive distribution rather than only its first two moments. Models

which minimize these measures are preferred. In addition to these three measures,

we also compare the empirical coverage probability (ECP) at a 95% nominal level of

all models. ECP evaluates the uncertainty quantification of the posterior predictive

distribution, and is expected to be close to the nominal level if the uncertainty is

correctly quantified. Finally, a baseline one-step ahead prediction in time series is

to use the observation of the previous time point as the prediction. We therefore

compare the performance of all predictions to this baseline prediction.
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4.2 Model comparison

Table 2 reports the predictions for the 2014 new HIV diagnosis rates using all 10

models over the three regions. All predictions are obtained by taking the posterior

median of the sampling chain of Ŷi,t+1, to limit the influence of big values resulted

from taking exponentiation of Ẑi,t+1. Model (3.2) stands out in terms of CRPS and

PMCC among the 10 models for all three datasets. In terms of MSPE, we again see

that (3.2) is selected as the best model for California and New England. However,

Model (3.2) yields a large MSPE for Florida. For this region, Model (3.3) offers

the smallest MSPE and the second smallest PMCC and CRPS which nevertheless

are comparable to their smallest respective values. Moreover, all ECPs provided by

Models (3.2) and (3.3) are comparable to the nominal level.

Overall, Model (3.2) appears to provide the best prediction for California and New

England while Model (3.3) provides the best prediction for Florida. A more careful

investigation shows that the Florida data itself exhibits spatial correlation although

no strong correlation is present in ρi, therefore modeling the spatial correlation or

spillover effect only through ρi as in Model (3.2) is likely insufficient. In such case,

Model (3.3) which includes spatial random effects to capture the spatial variability

arising from unknown factors is more coherent to the data. Figure 3 shows the

posterior means of ρi from Models (3.2) for each region. It exhibits a somewhat

similar pattern but with different values as in Figure 2. Figure 4 shows the predicted

HIV new diagnosis rates in 2014 based on our best performing statistical models, i.e.,

Model (3.2) for California and New England and Model (3.3) for Florida, paired with

their corresponding observations. Each pair of observations and predictions is seen

in high agreement.

Although the model comparison varies slightly for different regions, some consis-

tent patterns emerge. Comparing the results of Model 1 and Model 3 we can see
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that for these three datasets the temporal random effects have little effect to im-

prove the data modeling and thus prediction. This implies that the annual average

of adjusted HIV new diagnosis rates by taking covariates into account contributes

very little to explain the data variation. This is verified by the small magnitude of

the posterior estimates of α1, . . . , αT that is shown in the Supplement Figure 6. The

autocorrelation of adjusted HIV at each individual county is however nonnegligible.

In model 8, the estimates for ρ are around 0.23, 0.18, and 0.17 for Florida, California,

and New England, respectively. The estimates for ρi in Models (3.2) and (3.3) are

also significantly different from zero at many counties, see Figure 3. Including the

autocorrelation, even assumed fixed as in Model 7, helps to improve the prediction

compared to Models 1 and 3.

In contrast to temporal random effects, the spatial random effects seem to help

greatly with the prediction performance. This is reflected by the relatively good

performance of Models 2, 5, 6 and 8 all of which exclusively include the spatial

random effects. This suggests that spatial correlation in the data should be taken

into account. Furthermore, the fashion in which the spatial dependence is introduced

within the model also clearly makes a difference on prediction performance. Based

on Table 2, modeling the spatial correlation through autoregressive coefficients, as in

our SVAR Models, offer the best predictions. The significant advantage of allowing

for spatially varying autoregressive coefficients is directly shown by comparing the

SVAR models to Models 7 and 8 which have invariant autoregressive coefficients.

The spatio-temporal random effects in Models 4 and 6 seem to offer no help for

modeling these data sets. Indeed the inclusion of this random effect can even hurt

the prediction power by comparing Model 5 and Model 6. This could be due to a

possible overparameterziation of Model 6 for these datasets.

To further illustrate the role of the spatially varying autoregressive function in
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the prediction of HIV, Figure 5 shows a breakdown of the contribution from each of

the individual terms, Xβ and ρi(Zi,t−1 − Xi,t−2β), in Model (3.2) by plotting their

respective posterior means based on the California data. California was chosen for

illustration due to the small number of counties it has which provides a better visual.

The highly varying pattern of the component attributed to ρi(Zi,t−1−Xi,t−2β) shows

that the spatially varying autoregressive function makes an important contribution in

capturing the variability of the HIV data. If the autoregressive term were insignificant

we would expect to see a straight line of zeroes or a curve that is very close to the

zero line. Figure 5 shows that the curve of ρi(Zi,t−1−Xi,t−2β) is clearly non-negligible

and is indeed helpful to adjust the effect of Xβ in many counties, such as counties

6031 and 6065.

4.3 Exchangeable prior for ρi

Other covariance structure in priors of ρi may further improve the performance of

our SVAR models depending on the data properties. As suggested by a reviewer,

we also implemented an exchangeable prior for ρi, i.e., all diagonal entries of the

neighborhood matrix R used in Leroux et al. (1999) are set to be n − 1 while all

off-diagonal entries are −1. This corresponds to a simpler neighborhood structure

compared to the neighborhood matrix defined in Section 3.2, as the exchangeable

prior considers all counties to be neighbors.

The prediction results using the exchangeable prior are reported in the last two

rows of Table 2. Although neither of those two rows uniformly outperforms the other

models, we indeed observe some advantages of using an exchangeable prior. Some

notable advantages can be seen in the improved performance of (3.3) and (3.2) for

Florida and California respectively in terms of MSPE and CRPS when using ex-

changeable priors. Further investigation of the results indicates that in the case of
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moderately sized data with relatively low evidence of spatial correlation among neigh-

bors, as with Florida and California datasets, the simpler covariance structure of an

exchangeable prior reduces the volatility of the ρi estimates and improves predic-

tions that largely overestimate the observations. Figure 3 and Figure 4 compare the

estimates of ρi and predicted new HIV diagnosis rates in 2014 using exchangeable

priors to those using the classic neighborhood structure defined in Section 3.2, re-

spectively. The exchangeable prior obviously makes the estimates of ρi smoother,

particularly for Florida and New England, although the two sets of predictions are

hardly distinguishable in visualization except for a few counties.

4.4 Prediction of 2015 new HIV diagnoses

Due to the sluggish procedure of the public reporting of new HIV diagnosis data, the

2014 HIV data was not released until July 2016. Thus it will take at least until July

2017 to access the 2015 HIV data. We make predictions for the 2015 new HIV diag-

noses using Model (3.3)e for Florida, (3.2)e for California and (3.2) for New England

based on the the annual HIV data collected from 2008 to 2014 and the available co-

variate information between 2007 to 2014. The website healthindicators.gov where we

retrieve many of the covariates has paused their data collection service in June 2016

due to budget cuts, having only collected data through 2013, and it is unclear when

they would resume the service. This leads to incomplete covariate information for

2014. We used 2014 variables whenever they are available and an average of previous

years data to replace the missing 2014 variables. The influence of the missing vari-

ables should be minimal. On the one hand, we find that the covariates are relatively

stable over time and on the other hand, only four variables of 2014, two pertaining

to weather, excessive drinking and inactivity, are missing from our selected set of 28

variables. Our predictions can provide a timely surrogate for the true data, and thus
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are crucial for identifying HIV hotspots and making decisions on prevention, testing

and treatment efforts.

Figure 6 shows the predicted 2015 new HIV diagnosis rates and their corresponding

95% credible interval widths in log scale. Counties with no previous observed data,

e.g, Alpine Counny, CA which additionally has little to no observed data in its 5

neighboring counties as well, exhibit large credible widths. Figure 6 shows that the

counties that are expected to have the highest rates, Yi,t, in 2015 include: Union, FL

(140.1), Baltimore City, MD (78.2), Hamilton, FL (76.1), Prince Georges, MD (63.0),

Essex, NJ (61.4), Bronx, NY (59.1), Washington, FL (58.8), Broward, FL (57.7),

Miami-Dade, FL (55.7), New York, NY (55.3), and San Francisco, CA (50.7). The

numbers in parentheses are our predicted new HIV diagnosis rates for that county.

We find that these counties tend to have a higher percentages of African Americans,

people in the age range of 25-44, and people living in same sex households than other

counties. It is also seen that Florida in general has higher predicted new diagnosis

rates than the other two regions, which is an indication of severe HIV infection in the

South.

5 Discussion

Spatial correlation arises often because observations of geographic proximity tend to

be similar, and it usually decays as observations become further apart. With ag-

gregated count data (areal data) in epidemiology, spatial correlation is most often

present when regions of interest share boarders which enables certain type of com-

munications between neighbors. Moreover, Besag (1974) highlighted some important

environmental causes that are inherently spatially structured and thus can induce

spatial structuring in the response as well. Ignoring spatial autocorrelation in the
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analysis may lead to erroneous conclusion (e.g., Kühn, 2007) and the importance of

incorporating spatial autocorrelation has been realized in many disciplines such as

ecology and epidemiology (Bahn et al., 2006; Auchincloss et al., 2012). In particular,

Auchincloss et al. (2012) pointed out that considering spatial correlation is likely to

improve specificity of exposure and disease relationships, reduce measurement error,

and deepen our understanding of the relationships between location and health. Be-

sides the methods reviewed and described in this paper, Banerjee et al. (2015) and

references therein provide a rich source for modeling spatial disease.

To make predictions for spatially aggregated data over a fixed number of counties,

it is natural to investigate the characteristics of each individual time series, so having

an individual autoregressive model for each county immediately follows. However,

due to the spatial correlation of time series at adjacent counties and the potential

necessity to borrow strength from neighbors in model fitting when each series is short

in length, it is beneficial to jointly model the parameters of each time series. For these

reasons, we proposed our SVAR models, which are shown to be useful for prediction

and can be advantageous over the linear mixed models that have been popular for

spatio-temporal disease data modeling. In our models, the space-time interaction

is incorporated in a unique fashion by allowing for spatially varying autoregressive

coefficients. This procedure is more convenient than including a nonseparable spatio-

temporally correlated random effect in the model as the nonseparable space-time

covariance function is often difficult to model and to manipulate in computation.

The feature of our SVAR models that allows the temporal autocorrelation coeffi-

cients to vary spatially while still remaining parsimonious is particularly important

for the HIV datasets analyzed in this article, which have very few observed time points

at each county and thus cannot afford a separate model fitting for each county. We

compared our models to eight competing models and found that our SVAR models
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perform the best when jointly viewing their MSPE, PMCC, CRPS, and ECP based

on new HIV diagnoses rates in Florida, California and New England states. In the

geostatistics setting, Nobre et al. (2011) proposed a spatially varying autoregressive

model of order p to model space-time continuous processes of sea surface tempera-

tures, where a kernel convolution of bounded variables, particularly beta random vari-

ables, are proposed as priors for the bounded process of autoregression coefficients.

Our copula model for the prior of autoregressive coefficients is more computation-

ally efficient than the kernel convolution and can be generalized to any non-Gaussian

prior.

The form of the neighborhood matrix R in the CAR model is determined by

the underlying lattice structure of the data. Given no a priori knowledge on the

underlying structure of the data, the simple 0-1 adjacency rule for neighborhood

matrix as implemented in this paper is commonly used (Wall, 2004). Whereas, in

particular cases where the data consists of highly irregular lattices, Clayton and

Bernardinelli (1992) and Stern and Cressie (2000) suggested a weighted scheme for

elements ofR. These weights can be further determined based on the distance between

areas or the similarities between key covariates (Earnest et al., 2007).

There are many ways to expand our SVAR models to make them more flexible

and better accommodate different spatio-temporal processes. For example, the AR(1)

model can be replaced by a higher order autoregressive model where coefficients at

each order are allowed to vary spatially. We take a log transformation to attain the

Gaussian properties of our data. However, we are aware that such transformation

may not be appropriate for other data sets. Our model can easily be adapted to

accommodate other types of transformation such as the square root transformation,

Freeman-Tukey transformation of the form
√
x +
√
x+ 1 (Waller et al., 1997), or

other frameworks such as specifying Yi,t to follow a Poisson or binomial distribution.
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In the latter case, we model Yi,t ∼ Poisson(Ei,tri,t) or Yi,t ∼ binomial(ni,t, pi,t), where

Ei,t and ri,t are the expected and relative rates respectively and ni,t and pi,t are the

population at risk and the risk rate for the ith county at time t. We then model

log(ri,t) or logit(pi,t) in a similar fashion as Zi,t in this paper.

Finally, we focus on developing an effective statistical modeling framework for HIV

prediction based on the observed data. The autoregressive nature of our models makes

it challenging to perform prediction for counties with suppressed data in previous

years. Although it is well-known that the missing data not at random can cause bias

in the parameter estimation (Little and Rubin, 2014), its effect on predictions made

using our modeling framework is not very clear. A study of how to appropriately

incorporate information from the missing data to better inform the prediction is

currently underway.
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Table 1: Test Statistics and p-values for Moran’s I and Geary’s C on testing the

null hypothesis of no spatial correlation among ρi versas the one-sided alternative

hypothesis of positive spatial correlation.

Florida California New England

Statistic p-value Statistic p-value Statistic p-value

Moran’s I 0.0343 0.3216 0.1072 0.1389 0.2598 0.0003

Geary’s C 0.9610 0.3758 0.8098 0.0665 0.7384 0.0005

Table 2: Prediction results of 2014 new HIV diagnosis rates for Florida, California,

and New England.

Model Florida California New England

MSPE PMCC CRPS ECP MSPE PMCC CRPS ECP MSPE PMCC CRPS ECP

(3.2) 75.30 221.8 3.905 0.9574 7.231 94.84 1.456 0.9697 45.88 393.7 2.557 0.9196

(3.3) 56.89 223.0 3.906 0.9574 9.715 98.11 1.621 0.9697 66.43 399.3 2.949 0.9107

1 78.26 242.9 4.387 0.9787 10.42 113.9 1.843 0.9697 67.47 442.7 3.041 0.9821

2 58.04 242.0 4.152 1.0000 8.397 138.5 2.092 1.0000 61.41 416.3 2.751 0.9643

3 80.29 245.1 4.367 0.9362 10.28 106.4 1.748 0.9394 65.11 442.2 2.983 0.9018

4 74.91 275.2 4.650 1.0000 9.457 125.6 1.919 0.9697 64.09 455.9 2.958 0.9821

5 60.62 231.7 3.990 0.9787 7.951 116.2 1.801 1.0000 55.10 385.3 2.605 0.9018

6 67.73 240.5 4.223 1.0000 8.031 107.2 1.685 0.9697 63.31 411.1 2.722 0.929

7 76.86 230.8 4.106 0.9362 9.297 107.8 1.704 0.9697 58.65 436.5 2.838 0.9821

8 65.67 226.8 3.922 0.9574 8.289 107.9 1.646 0.9697 57.78 398.4 2.717 0.9286

Y ∗t−1 61.51 – – – 10.03 – – – 62.58 – – –

(3.2)e 77.91 224.2 3.988 0.9574 6.875 96.14 1.446 0.9697 49.01 398.7 2.595 0.9286

(3.3)e 53.72 221.9 3.843 0.9362 7.244 93.30 1.453 0.970 55.14 387.1 2.754 0.9107

Y ∗t−1 indicates the baseline prediction for each county, and e indicates that an ex-

changeable prior was used for ρi. The numbers in bold text are the smallest numbers

of their respective columns excluding the last two rows. The numbers in italic in the

last two rows are the smallest numbers of their respective columns.
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Figure 1: 2012 new HIV diagnosis rates in cases per 100,000 across the United States.

Figure 2: Spatial maps of independent ρ estimates using maximum likelihood esti-

mation for counties in Florida, California and New England.
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Figure 3: Spatial maps of posterior means of ρi from Model (3.2) (top row) and (3.2)e

(bottom row) for Florida, California and New England.
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Figure 4: Observed (top row) and predicted (middle and bottom rows) new HIV

diagnosis rates in 2014 for Florida, California and New England. Middle row is

obtained using priors with neighborhood structure and bottom row is obtained using

exchangeable priors.
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Figure 5: Break down of contribution from each term in Model (3.2) to the prediction

of 2014 new HIV diagnosis rates in California, where ρ∗iZ indicates the contribution

from ρi(Zi,t−1 −Xi,t−2β) and SVAR indicates the overall model prediction.
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Figure 6: Predicted 2015 new HIV diagnosis rates (top row) and their corresponding

95% credible interval widths in log scale (bottom row) for Florida, California and

New England using (3.3)e, (3.2)e and (3.2) for each state respectively.
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