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Calculating Effect Sizes for Designs with Between-Subjects and
Within-Subjects Factors: Methods for Partially Reported Statistics in

Meta-analysis

Paul Seignourel1 2

Dolores Abarracín

Department of Psychology, University of Florida

Abstract

Con el objetivo de resolver las deficiencias de las técnicas previas para calcular el tamaño
del efecto sobre la base de datos insuficientes provenientes de diseños con factores entre-
e intra-sujeto, los autores desarrollaron procedimientos para calcular tamaños del efecto
a partir de reportes de medias, número de sujetos en cada celdilla y razones F . Específi-
camente, se derivan términos de error que se utilizan para calcular la desviación típica
conjunta y la correlación y estos estadísticos se utilizan para calcular diferencias de me-
dias estandarizadas. Se sugieren correcciones para tamaños del efecto obtenidos sobre la
base de distinto número de factores y se extienden todos los procedimientos para diseños
desequilibrados y de orden superior.
Palabras clave: Meta-análisis, Análisis de varianza, Diseños mixtos, Desviación típica,
Correlación, Reporte incompleto de datos.

Abstract

To resolve the deficiencies of prior techniques to compute effect sizes from insufficient
data of designs with both between-subjects and within-subjects factors, the authors deve-
loped procedures to calculate effect sizes from reports of means, number of participants
in each cell and F−ratios. Specifically, error terms are derived and used to estimate the
pooled standard deviation and the correlation, and these statistics can be used to calcu-
late standardized differences. Corrections are suggested for effect sizes obtained from
designs with different numbers of factors and all procedures are extended for unbalanced
and higher-order designs.
Key words: Meta-analysis, Analysis of variance, Mixed designs, Standard deviation, Co-
rrelation, Incomplete data reports.

There is no such thing as a correct study. The sources of error in each individual
piece of research arise from the selection of the method, the sampling criteria, and
various other factors that clutter the evidence that the study provides (Cooper &
Hedges, 1994, Hunter & Schmidt, 1990). Researchers have been aware of this pro-
blem for a long time and often attempt to reach conclusions that generalize across
the particulars of the individual studies (Olkin, 1990). For example, Pearson (1904)
averaged correlations obtained in five samples and was able to estimate the typical
effect of inoculation for typhoid fever. More recently, meta-analytic techniques have
improved our understanding of the assumptions that underlie such integration of
findings (see e.g., Shadish & Haddock, 1994). These synthesis methods allow scien-
tists to discern whether a given phenomenon is robust across conditions, and also

1Correspondence concerning this paper should be addressed to Paul Seignourel or Dolores Albarra-
cín, Department of Psychology, University of Florida, Gainesville, Florida 32611. Electronic mail can be
sent to <seignour@ufl.edu> or <dalbarra@ufl.edu>

2The research was supported by grants from the National Institute of Mental Health (R03-MH58073
and K01-MH01861). We thank Lyle Brenner for conceptual contributions to the paper and G. Tarcan
Kumkale, Blair T. Johnson and Alice H. Eagly for insightful comments and suggestions on an earlier
version of this manuscript.
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Designs with within-subjects factors 1

to identify between-study differences that moderate the emergence of the phenome-
non.

To represent the effect of one variable on another, researchers often obtain a
measure of the standardized mean difference d:

d = MT −MC
SD

,

where MT and MC are the means of the treatment and control groups, respectively,
and SD is an estimate of the standard deviation. The estimate SD can be defined
as (a) the pooled standard deviation of the two groups, (b) the standard deviation
of either group under the assumption of homogeneity of variance, (c) the standard
deviation of a control group if available, or (d) various “adjusted” standard deviations
(see our section on corrected effect sizes). In this paper, we concentrated on Spooled,
the pooled standard deviation of the two groups, defined by

Spooled =
√√√(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 +n2 − 2
,

where n1 and n2 are the numbers of participants in groups 1 and 2, respectively,
and SD1 and SD2 are the standard deviations of groups 1 and 2.

In the case of a within-subjects design,

d = M2 −M1

SD
,

where M1 and M2 are the means at Time 1 and Time 2, respectively, and SD is an
estimate of the standard deviation. As in the case of between-subjects designs, we
used Spooled as an estimate of the standard deviation.3

Despite the simplicity of the standardized mean difference d, the statistic is dif-
ficult to compute when the studies report insufficient data. Despite these deficien-
cies, in the case of between-subjects designs, one can derive Spooled from a single
F−ratio, accompanied by the means and the numbers of participants in each cell
(see Johnson, 1993). However, researchers who analyze data from a design with
both between-subjects and within-subjects factors are expected to know the mean
and the standard deviation in each group, as well as the correlation between the
repeated measures (see e.g., Nouri & Greenberg, 1995; Cortina & Nouri, 2000; John-
son & Eagly, 2000). Unfortunately, the literature only rarely presents such detailed
statistical reports (Cooper & Hedges, 1994; Johnson, 1993).

The present paper concerns a possible treatment of the problem of insufficient
report in designs with between-subjects and within-subjects factors. The methods
were developed in the context of a meta-analysis that Kumkale, Albarracín, and Seig-
nourel (2001) conducted to determine attitude change maintenance and decay follo-
wing exposure to a persuasive message. The researchers were interested in obtaining

3Dunlap, Cortina, Vaslow and Burke (1996) recommended using the pooled standard deviation to
estimate effect sizes, regardless of whether estimates correspond to between- or within-subjects dif-
ferences. However, Johnson and Eagly (2000) suggested using the standard deviation of the diffe-
rence in the case of within-subjects designs. In our view, using Spooled has the advantage of provi-
ding effect size indexes that are on the same metric as those calculated from between-subject des-
igns. This property, in turn, is crucial for pooling effect sizes across different experimental designs.
We nonetheless included the computation of Sdiff in our programs, which can be accessed from
www.psych.ufl.edu/˜albarrac/effectsizes.htm.
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Spooled to test change over time within each condition of interest, but some studies,
especially those published in the sixties and seventies, failed to report standard de-
viations and correlations between repeated measures (e.g., Johnson & Watkins, 1971;
Watts & McGuire, 1964; Weber, 1971). However, the means, the number of partici-
pants in each cell, and at least two F-ratios were almost always reported. Instead of
discarding these studies, the researchers developed methods to calculate the pooled
standard deviation, an estimate of the correlation and the effect sizes of interest, on
the basis of the available information.4

This paper describes the procedures we derived to calculate effect size estima-
tes from reports of means, number of participants and F-ratios. However, pooling
statistical data of any sort can provide biased estimates if the primary data violated
the statistical assumptions that underlie the correct use of a statistical procedure.
In the case of analysis of variance designs with within-subjects factors, homogeneity
of variance, normality and compound symmetry should be verified before reporting
results. To this extent, the procedures we derived are useful only if one can select
quality reports and if the primary authors took steps to guarantee the scientific and
statistical integrity of their data.

Two-Factor Experiments with Repeated Measures on One Factor5

In certain designs, some, but not all of the variables are within-subjects factors.
Imagine that a researcher conducts an experiment to investigate differential decay in
attitude change among males and females. There are two factors in this design. The
first one (between-subjects), which we denote as factorA, distinguishes between ma-
les and females. The second, within-subjects factor, B, corresponds to participants’
reports of their attitudes at two points in time. This design appears in Table 1 and
can be represented by the model:

Yijk = µ +αi + βj + (αβ)ij + ρk(i) + εijk, (1)

where Yijk is an observation; i = 1,2 are the two levels of factor A; j = 1,2 are the
two levels of factor B; µ is the overall mean; αi is the mean of group i deviated from
the overall mean µ; βj is the mean of measure j deviated from the overall mean µ;
(αβ)ij is the mean of measure j for group i, minus the mean for group i, minus
the mean for measure j, plus the overall mean µ; and the ρk(i) and εijk are error
terms independent of each other, independent across observations, and distributed
N (0, σ 2

p) and N (0, σ 2), respectively. The ρk(i) correspond to the independent ef-
fects of each participant, which are constant over the different measures. The εijk,
instead, are different for each participant and for each measure.6

4For programs associated with these methods, see www.psych.ufl.edu/˜albarrac/effectsizes.htm.
5For all notations and definitions in the following section, we refer to the presentation of two-factor

designs with repeated measures on one factor given by Neter et al. (1990). Note that, in our model, the
between- and within-subjects variables are both considered to be fixed effects.

6Some readers may notice that the term βjk(i) introduced by Winer (1971) is missing in equation
(1). However, because there is only one observation per participant and per measure in this model, the
additional term βjk(i) is confounded with εijk. That is, given a set of data, it would be impossible to
distinguish between the two terms, and only their sum could be uniquely identified. We therefore refer
to the model and notations found in Neter et al. (1990), which we find more parsimonious. However, the
same derivations, with slight modifications, could be obtained using the model introduced by Winer.
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Table 1. A 2 x 2 Design with Repeated Measures on One Factor

Factor B (Within-subjects)
Factor A (Between-subjects) Time 1 Time 2
Males Y 11· Y 12·
Females Y 21· Y 22·

The sum of the variance of ρk(i) and the variance of εijk provides the variance of
the observation Yijk:

σ{Yijk} =
√
σ 2
p + σ 2 (2)

As mentioned before, in this paper we assume homogeneity of variance, and we
focus on Spooled as an estimate of σ{Yijk}. Therefore, for the design in Table 1, the
estimate of the difference between Time 1 and Time 2 among males, for example, is

g = Y 12· − Y 11·
Spooled

, (3)

where Y 11· and Y 12· are the means for males at Time 1 and Time 2, respectively.7

Likewise, the estimate of the difference between females and males at Time 1 is

g = Y 21· − Y 11·
Spooled

. (4)

Computing the Pooled Standard Deviation and the Correlation in a 2 × 2 Design

We first analyzed a sample of 20 males and 20 females who participated in Pro-
ject RESPECT, a multi-site study funded by CDC. Project RESPECT (Kamb et al., 1998;
Kamb, Dillon, Fishbein, Willis, & Project RESPECT Study Group, 1996) was a ran-
domized control trial comparing three separate face-to-face HIV (Human Immuno-
deficiency Virus)/STD (Sexually Transmitted Disease) prevention interventions (i.e.,
educational messages typical of current practice, brief counseling and enhanced
counseling) with approximately 1,500 participants in each. The project was longi-
tudinal and measures of behavioral and psychosocial variables were obtained at the
(a) baseline, (b) immediate follow-up, (c) 3-month follow-up, (d) 6-month follow-up,
(e) 9-month follow-up, and (f) 12-month follow-up. For our first analysis, we restric-
ted consideration to participants’ reports of their attitudes towards condom use at
baseline and the immediate follow-up (within-subjects factor) across the two gender
groups (between-subjects factor).

The descriptive statistics and F−ratios for these 40 participants appear in Tables
2 and 3. Using the standard deviations reported in Table 2, we estimated the pooled
standard deviation for this design at 1.24. We used the raw data to calculate the
correlation between attitudes at Time 1 and 2, which were r = .45 and r = .54 for
males and females, respectively. The pooled correlation was therefore .50.

7With respect to equation (1), Y 12· is an unbiased estimate of (αβ)12 +α1 +β2 +µ, while Y 11· is an
unbiased estimate of (αβ)11 + α1 + β1 + µ. Therefore, the numerator of equation (3) is an unbiased
estimate of (αβ)12− (αβ)11+β2−β1. Likewise, the numerator of equation (4) is an unbiased estimate
of (αβ)21 − (αβ)11 +α2 −α1.
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Table 2. Descriptive Statistics for Attitudes at Time 1 and 2

Attitude 1 Attitude 2
Gender M SD M SD
Females 0.364 1.374 1.536 1.389
Males 1.750 1.243 2.371 0.905

Table 3. Analysis of Variance for Attitude Change at Time 1 and 2

Source df F
Between-subjects

Gender (A) 1 10.84
Within-subjects

Time (B) 1 19.80
A x B 1 1.86

Imagine, however, that the researchers presented only the means, the sample size
and the F−ratios. In that case, meta-analysts who wanted to calculate Spooled must
first compute various sums of squares using the means provided in Table 2, and
then use the F−ratios to derive the standard deviation. Following that procedure,

MSA = 2n
∑
i
(Y i·· − Y ···)2 = 40∗ (.5552 + .5552) = 24.7, (5)

MSB = 2n
∑
j
(Y ·j· − Y ···)2 = 40∗ (.4482 + .4482) = 16.1, (6)

and

MSAB = n
∑
i,j
(Y ij· − Y i·· − Y ·j· + Y ···)2

= 20∗ (.1382 + .1382 + .1382 + .1382) = 1.5 (7)

We can then derive the error terms associated with this design. First,

MSS(A) = 1
n− 1

∑
i,k
(Y i·k − Y i··)2

= MSA
FA

= 24.7
10.8

= 2.28 (8)

gives us the mean square error associated with the participants (often referred to as
between-subjects error variance). We can also calculate:

MSB.S(A) = 1
2(n− 1)

∑
i,j,k

(Y ijk − Y ij· − Y i·k + Y i··)2, (9)

often referred to as within-subjects error variance, by using FB , or, alternatively, FAB .
That is,

MSB.S(A) = MSB
FB

= 16.1
19.8

= 0.81, (10)



Designs with within-subjects factors 5

or

MSB.S(A) = MSAB
FAB

= 1.5
1.9

= 0.81. (11)

Once we obtain MSS(A) and MSB.S(A), we are only one step away from obtaining
Spooled, because MSS(A) and MSB.S(A) are estimates of σ 2 + 2σ 2

p and σ 2, respec-
tively (see Neter, Wasserman, & Kutner, 1990). Therefore, an estimate of the pooled
standard deviation is:

Spooled =
√
MSS(A)+MSB.S(A)

2
= 1.24, (12)

which is equal to the value we computed by pooling the standard deviations in Table
2.

The correlation between the within-subjects measures can be derived with equally-
straightforward procedures.8 From Equation (1),

Cov{Yijk, Yij′k} = σ 2
p, (13)

for every i, k and j ≠ j′. Hence, the correlation between attitude at Time 1 and
attitude at Time 2 is given by

σ 2
p

σ 2
p + σ 2

= Cov{Yijk, Yij′k}
σ 2{Yijk} (14)

Therefore, an estimate of the correlation is

r = MSS(A)−MSB.S(A)
MSS(A)+MSB.S(A) =

2.28− 0.81
2.28+ 0.81

= 0.47 (15)

Note that the value .47 is slightly different from the pooled correlation .50 that we
computed directly from the raw data. In order to show why r and rpooled differ in ge-
neral, we related their expressions to the variances and covariances of the different
cells and groups in the sample (see Appendix B). As a consequence, we also showed
that their values are identical whenever the different variances, as well as the diffe-
rent covariances, are equal in the sample. Even though this condition is unlikely to
be met in any given data set, this result shows that we can expect the two estimates
r and rpooled to be close when the variances and covariances do not differ by much
in the sample.

8Although we do not use the correlation in computing our effect size estimates, the correlation is
necessary to calculate the sampling variance of the estimates (see e.g., Becker, 1988; Morris, 2000),
which is required for many meta-analytic procedures. We should point out, however, that the expres-
sion found in Becker requires an estimate of the pre-test standard deviation, which is unavailable in the
situation we describe in this paper. Future research is needed to determine the sampling distribution
of the effect size estimates when using Spooled, as proposed here.
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Correcting Effect Sizes

As pointed out by several authors (see e.g., Morris & DeShon, 1997), a critical
issue in meta-analysis is to derive comparable estimates from different studies using
different statistical procedures. In certain cases, this concern makes necessary the
calculation of a corrected effect size instead of the usual raw estimates.9 There are
two types of corrections that are relevant in the context of a two-factor design with
repeated measures on one factor.

First, suppose that a meta-analyst wants to determine if a given counseling me-
thod produced change over time and has two studies with relevant information.
The first report is a 2 x 2 design like the one in Table 2, with gender as a between-
subjects variable and time as the within-subjects factor. In the second study, ho-
wever, the authors did not separate males and females, and the design is a simple
within-subjects design with two measures of attitude.

Suppose further that the meta-analyst knows the means, the number of parti-
cipants and the F−ratios of the 2 x 2 design. The researcher can compute Spooled
for the first study, average the means across genders, and consequently, obtain an
estimate of the effect size:

g = M2 −M1

Spooled
. (16)

Unfortunately, however, this estimate may not be comparable to the estimated effect
size for the second study. If men and women scored differently on the attitude
scale, splitting the participants according to gender is likely to reduce the standard
deviation in the first, 2 x 2 design, compared to the one factor within-subjects design
of the second study (see Cortina & Nouri, 2000, Morris & DeShon, 1997, on the issue
of corrected effect sizes). To overcome this difficulty, one can correct the pooled
standard deviation obtained from the 2 x 2 design. As proposed by Glass, McGaw
and Smith (1981), in the general case of a a x b design:

Scorrected =
√
SSA+ SSAB + SSS(A)+ SSB.S(A)
dfA + dfAB + dfS(A) + dfB.S(A) . (17)

Given the reconstruction of the various sums of squares we described before (see
Equations 5-11), the computation of the corrected standard deviation is a simple
extension of our previous calculations.10

The second corrected effect size associated with the design in Table 2 corres-
ponds to the difference between males and females, independent of time of measu-
rement. In this case, the solution proposed by Nouri and Greenberg (1995) is to sum
the attitudes at Time 1 and 2 and compare:

Y 1·· =
∑
j,k
Y1jk (18)

9In other cases, however, the effect sizes should not be corrected, depending on whether or not the
off-factor varies in the population of interest (see Cortina, J. M., & Nouri, H., 2000). In the following
example, gender is the off-factor, and it is therefore appropriate to correct the effect size.

10As pointed out by Morris and DeShon (1997) in the case of a between-subjects design, the corrected
standard deviation is not a new estimate. It is the Spooled that the experimenter would have found had
he used a one-factor within-subjects design to analyze the raw data.
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with

Y 2·· =
∑
j,k
Y2jk. (19)

According to Ghiselli (1964), the appropriate standard deviation for estimating this
effect size is:

Scorrected =
√

2(1+ rpooled)S2
pooled. (20)

However, when the F−ratios are available, it may not be necessary to derive Scorrected.
The reason is that FA is equal to the F -value obtained in the two-cell between-subjects
design. Therefore, the usual formula,

g =
√

2FA
n
, (21)

applies.

Extending the Method to Unbalanced Designs

In the previous sections, we assumed an equal number of participants in each
group. This assumption, however, is seldom met in the literature. Therefore, it is
necessary to extend our procedures to unbalanced designs analyzed with unweigh-
ted means analysis of variance procedures.11 In these procedures, the researcher
treats the means of each cell as single observations in each treatment. The estimated
variance is then multiplied by the coefficient:

α = 1
ab

∑
i,j

1
nij

, (22)

where a is the number of groups, b is the number of repeated measures, and nij
is the number of participants in group i for the measure j. This new variance can
be used to calculate all the F-ratios in the design (for further details, see Neter et
al., 1990). Conversely, when researchers want to obtain effect sizes from a report
of means and F−ratios from an unbalanced design, they can compute the sums of
squares and an estimate of the variance of the sums of squares, and then divide this
estimate by the coefficient α to obtain Spooled. Computing the correlation r involves
the same steps.

Correcting effect sizes for unbalanced designs follows the logic described before.
If one needs to average the results of different groups to obtain the within-subjects
effect sizes, it is necessary to compute the standard deviation for each repeated
measure. As shown in Nouri and Greenberg (1995), the corrected standard deviation
for the measure j is given by

Sj =

√√√√√ 1
nj − 1


(nj − b)S2

pooled +
∑
i
nij(Y ij· − Y i··)2


, (23)

11When confronted with unbalanced designs, modern software usually use least square methods,
which differ from the unweighted means solutions for variables with more than two levels. However,
standard deviations are usually reported in recent publications. Therefore, our method applies mainly
to reports published during the sixties and seventies, when the unweighted means methods were fre-
quently used. The reader should of course be careful when applying our method to unbalanced designs
with more than two levels in one of the variables.
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where nj is the number of participants for the measure j, and the other terms were
already defined.

Extending the Method to Higher-Order Designs

In the preceding sections, we focused our attention on 2 x 2 designs. However,
our method generalizes to more complex designs as well. For an a x b design,
MSS(A) is an estimate of σ 2 + bσ 2

p , whereas MSB.S(A) is still an estimate of σ 2.
Thus, our new estimate of the variance is:

Spooled =
√
MSS(A)+ (b − 1)MSB.S(A)

b
. (24)

Accordingly, our estimate of the correlation is:

r = MSS(A)−MSB.S(A)
MSS(A)+ (b − 1)MSB.S(A)

. (25)

For designs with one within-subjects variable and two or more between-subjects
variables, the method remains essentially the same (for a presentation of this type of
design, see Myers, 1979).12 The within-subjects error variance is always an estimate
of σ 2, while the between-subjects error variance is an estimate of σ 2 + tσ 2

p , where
t is equal to the number of repeated measures for each participant. Consider, for
example, an a x b x t design, where the two first factors (A and B) are between-
subjects variables and the last one (T ) is a within-subjects variable. In this case,
MST.S(AB) is an estimate of σ 2 + tσ 2

p . Thus, the estimates of the variance and
correlation are, respectively:

Spooled =
√
MSS(AB)+ (t − 1)MST .S(AB)

t
(26)

and

r = MSS(AB)−MST.S(AB)
MSS(AB)+ (t − 1)MST .S(AB)

. (27)

As before, we verified these procedures on the data of the Project RESPECT (Kamb
et al., 1996). This time, however, we used all relevant participants in the sample (N =
624), introduced type of intervention (educational messages vs. brief counseling) as
a new between-subjects variable, and used three measures of attitudes (3-, 6- and 9-
month follow-ups) as our within-subjects factor. Thus, we had a three-factor design
(2 x 2 x 3) with repeated measures on the last factor, and with unequal numbers of
participants in the different groups (125, 158, 176 and 165 participants for the four
groups, respectively). The descriptive statistics and F−ratios for this data set are
provided in Tables 4 and 5. Pooling the 12 values provided in Table 4, we found
Spooled = 1.52. We also conducted bivariate analysis and found that the pooled
correlation for this sample was rpooled = .74.

12The method is slightly different, however, for designs with more than one within-subjects varia-
ble. Even though we do not present the modifications for this type of design in this paper, pro-
grams to compute Spooled for designs with two levels of within-subjects variables are available at
www.psych.ufl.edu/˜albarrac/effectsizes.htm.
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Table 4. Descriptive Statistics for Attitudes at Time 3, 4 and 5

Attitude 3 Attitude 4 Attitude 5
Type of Intervention M SD M SD M SD
Educational messages

Females (n = 125) .870 1.670 .955 1.636 .907 1.695
Males (n = 158) 1.627 1.450 1.720 1.347 1.616 1.422

Brief Counseling
Females (n = 176) .823 1.610 .820 1.590 .895 1.641
Males (n = 165) 1.697 1.359 1.731 1.387 1.565 1.503

Table 5. Analysis of Variance for Attitude Change at Time 3, 4 and 5

Source df F
Between-subjects

Intervention (A) 1 .06
Gender (B) 1 49.01
A x B 1 .11

Within-subjects
Time (T ) 2 1.06
T x A 2 .34
T x B 2 1.59
T x A x B 2 .61

Given the F−ratios provided in Table 5, several possibilities are offered to the
meta-analyst for computing the missing standard deviation and correlation. In fact,
any choice of one between-subjects F−ratio and one within-subjects F−ratio (a total
of 12 possible combinations) would lead to an estimate of Spooled and r .13 In the
following, we show our computations using FB and FAT , but any other choice would
yield the same results.

First, one must calculate the coefficient α introduced in equation (22). We have:

α = 1
4

(
1

125
+ 1

158
+ 1

176
+ 1

165

)
= .00652 (28)

Now, we need to compute the sums of squares associated with the given (or chosen)
F−ratios:

MSB = 6
α
∗
∑
j
(Y ·j·· − Y ····)2 = 6

.00652
∗ (.3912 + .3912) = 280.7 (29)

MSAT = 1
α

∑
i,k
(Y i·k· − Y i··· − Y ··k· + Y ····)2

= 1
.00652

∗ (.01952 + .01732 + .00212 + .01942 + .01742 + .00212)

= .209 (30)

13Note that, in this type of design, the meta-analyst still needs only two F−values, one corresponding
to a within-subjects effect and the other to a between-subjects effect. However, several F−values of
each type might be available, and these values may yield different estimates of the standard deviation
and correlation. All these values, however, should be equal, with the exception of rounding error. If
they are not, the discrepancy is probably due to misreport.



10 P. Seignourel and Dolores Albarracín

Using the F−ratios, we derive the between-subjects and within-subjects error varian-
ces:

MSS(AB) = MSB
FB

= 280.7
49.01

= 5.727 (31)

MST.S(AB) = MSAT
FAT

= .209
.34

= .615 (32)

Finally, using equations (26) and (27), we compute:

Spooled =
√

5.727+ 2∗ 0.615
3

= 1.52 (33)

r = 5.727− 0.615
5.727+ 2∗ 0.615

= .73 (34)

Consistent with the result of Appendix A, our estimate Spooled is equal to the one de-
rived from the raw data, while r = .73 is very close to the pooled standard deviation
rpooled = .74 computed from the raw data.

Discussion

Meta-analysis enables researchers to average effect sizes and draw inferences
about the generalizability of a given phenomenon. For example, one can study the
effects of persuasive communications over time and reach conclusions concerning
change or stability as a result of the interventions (see e.g., Bukoski, 1997). Up to
now, however, the available techniques to calculate effect sizes from designs with
both between-subjects and within-subjects factors were limited, because they requi-
red information on the correlation between the repeated measures in the design, as
well as the mean, number of participants and standard deviation in each cell (see
e.g., Becker, 1988; Johnson & Eagly, 2000; Hedges & Olkin, 1985; Nouri & Greenberg,
1995). In contrast, the methods we described in this paper suggest ways of calcu-
lating effect sizes on the sole basis of the means, number of participants and two
F−ratios.

Under most conditions, the estimates we described generate values that are iden-
tical to the ones generated from the primary data of a study (see Appendix A and B).
Thus, as we showed, the standard deviation we calculated for the Project RESPECT
yielded 1.24 regardless of whether we used the primary data or the report of means,
number of participants and two F−ratios (see Tables 2 and 3). Furthermore, the
estimate of the correlation between the two longitudinal measures we considered
also yielded similar estimates (r = .47 ≈ .50).

An important question is whether the techniques we described are robust across
conditions. With respect to unbalance, when primary researchers only report the
total number of participants in their study, we recommend that the meta-analyst as-
sume a balanced design and simply divide the overall N in the design by the number
of cells. Of course, this rule of thumb might introduce a bias in the effect size es-
timates. However, note that the number of participants in each cell is only relevant
for calculating the coefficient α defined in equation (22). The estimates of Spooled
and r are obtained by multiplying estimates based on the means and the F-ratios
by the square root of α. In the case of a design with two groups and two repeated
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measures, we show in Appendix C that assuming a balanced design leads to underes-
timating Spooled and r by approximately 2e2, where e is a measure of the deviation
from a balanced design, and 2e2 is an error in proportion to the estimates of Spooled
and r .14 For example, mistakenly assuming n = 20 in a study with two groups of
15 and 25 participants respectively, would introduce a bias of approximately 3% in
the estimates of Spooled and r . Note that, even when the difference in the number
of participants is important (15 vs. 25), the resulting bias is small, regardless of
the means and F-ratios. For this reason, assuming a balanced design when only the
total number of participants is available is unlikely to introduce a substantive bias
in our estimates. However, if one has no information concerning the total number of
participants in the study, then our method does not allow for an estimate of either
Spooled or r .

Concerning correction of effect sizes, the procedures we presented share the
same properties of similar corrections suggested by Glass and his colleagues (1981;
see also Morris & DeShon, 1997). Thus, it is not that one effect size is more correct
than the other, but that researchers should use effect sizes that are on the same me-
tric (Morris & DeShon). Furthermore, the correction is only valid to the extent that
F−ratios are unbiased; consequently, heterogeneity of variance and non-normalty
can produce biased F−ratios (Wilcox, 1993). In any event, interest in meta-analysis
has increased greatly in the last few years and researchers need methodologies that
allow them to deal with the reality of insufficient data reports. The procedures we
reported in this paper may help to alleviate the lack of technical resources for inves-
tigators who wish to calculate effect sizes in the context of designs with between-
subjects and within-subjects factors.

Two possible extensions to the present work should be considered as directions
for future research. First, as we have proved in Appendix B, the estimate r derived
with the method presented in this paper and the classical estimate rpooled are iden-
tical only when the various variances and correlations are equal in the different cells
and groups of the sample. It would be important to estimate how discrepancies in
sample variances and correlations affect the estimates r and rpooled. Secondly, on
the basis of the information available in psychological reports, one cannot be sure
that the primary researchers have taken steps to ensure the validity of conducting
an analysis of variance. Therefore, estimating the extent to which a violation of
the assumptions underlying such designs (i.e., homogeneity of variance, compound
symmetry and normality) affects our effect size estimates would contribute to our
current set of meta-analytic tools.
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Appendix A
Equivalence with the Classical Estimate

When presenting our method for estimating the variance, we claimed that in the case
of a 2 x 2 design with repeated measures on one factor,

S2
pooled =

MSS(A)+MSB.S(A)
2

(35)

is the usual estimate of the pooled variance. Actually, this result is true for any kind
of design with both between-subjects and within-subjects factors, with the modifi-
cation

S2
pooled =

MSS(A)+ (T − 1)MSB.S(A)
T

, (36)

where T is the number of repeated measures for each participant. Here, we prove
this result for an a x b design, where b is the number of repeated measures, and
the design is assumed to be balanced. The demonstration is essentially the same for
unbalanced or more complex designs.

For ana x b design, using notations from Neter et al. (1990), the classical estimate
of the variance is given by

∆ = 1
ab(n− 1)

∑
i

∑
j

∑
k
(Yijk − Y ij·)2. (37)

Then,

MSS(A) = b
a(n− 1)

∑
i

∑
k
(Y i·k − Y i··)2

= 1
a(n− 1)

∑
i

∑
j

∑
k
(Y i·k − Y i··)2. (38)

Hence,

a(n− 1)(MSS(A)+ (b − 1)MSB.S(A))

=
∑
i,j,k

(
(Y i·k − Y i··)2 + (Yijk − Y ij· − Y i·k + Y i··)2

)

=
∑
i,j,k

(
2(Y i·k − Y i··)2 + (Yijk − Y ij·)2 − 2(Yijk − Y ij·)(Y i·k − Y i··)

)

=
∑
i,j,k

(
(Yijk − Y ij·)2 + 2(Y i·k − Y i··)(Y i·k − Y i·· − Yijk + Y ij·)

)
. (39)

Now, note that∑
j
(Y i·k − Y i··)(Y i·k − Y i·· − Yijk + Y ij·)

= (Y i·k − Y i··)

bY i·k − bY i·· −∑

j
Yijk +

∑
j
Y ij·




= 0, (40)

which proves the result.
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Appendix B

Difference Between the Estimates r and rpooled

It is important to understand why the two estimates r and rpooled are in general
different. For that purpose, we relate their expressions to the variances and cova-
riances in the sample in the case of a 2 x 2 design. The results, however, inmediately
generalize to higher order designs.

For every i and j, COVi denotes the covariance in the sample for group i, and Vij
denotes the variance in the sample for group i and measure j:

COVi = 1
n− 1

∑
k
(Yi1k − Y i1·)(Yi2k − Y i2·) (41)

Vij = 1
n− 1

∑
k
(Yijk − Y ij·)2 (42)

In order to evaluate r , as defined in equation (15), we will first find an expression
for the numerator MSS(A)−MSB.S(A). We have

MSS(A)−MSB.S(A)
= 1

2(n− 1)

∑
ijk

(
(Y i·k − Y i··)2 − (Yijk − Y ij· − Y i·k + Y i··)2

)

= 1
2(n− 1)

∑
ijk
(Yijk − Y ij·)(2Y i·k − Yijk + Y ij· − 2Y i··) (43)

Using the fact that

Y i·k = Yi1k + Yi2k
2

(44)

Y i·· = Y i1· + Y i2·
2

, (45)

equation (43) becomes

MSS(A)−MSB.S(A) = 1
n− 1

∑
ik
(Yi1k − Y i1·)(Yi2k − Y i2·)

= 1
n− 1

(COV1 + COV2) (46)

Combining this result with equation (35), we derive

r = COV1 + COV2

2S2
pooled

(47)

On the other hand, if r1 and r2 denote the estimates of the correlations between the
two repeated measures for group 1 and group 2, respectively, we have

r1 = COV1√
V11V12

(48)

r2 = COV2√
V21V22

(49)
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To pool these two correlations, one must first calculate z1 = f(r1) and z2 = f(r2),
where the function f is defined by

f(x) = 1
2

ln
(

1+ x
1− x

)
(50)

Then, one must compute z, the average z1 and z2, and take rpooled = f−1(z) (see
Johnson, 1993). Therefore, we have

rpooled =
√
(1+r1)(1+r2)
(1−r1)(1−r2) − 1√
(1+r1)(1+r2)
(1−r1)(1−r2) + 1

(51)

It is apparent from equations (47), (48), (49) and (51), that the expressions of r and
rpooled differ in general. Of course, if r1 = r2, then rpooled = r1 = r2. Therefore, a
sufficient condition for having r = rpooled is given by

V11 = V12 = V21 = V22 = S2
pooled (52)

and

COV1 = COV2 (53)

Of course, these conditions are never met exactly in any given data set. However,
we can expect that, when the covariances as well as the variances in the sample do
not differ by much, the estimates r and rpooled will be reasonably close.
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Appendix C

Bias Associated with Assuming a Balanced Design

In many studies, primary researchers report the total number of participants in
the experiment, but fail to indicate the number of participants in each cell of the
design. When confronted with this situation, we recommend that the meta-analyst
assume a balanced design. In the following, we estimate the bias introduced by this
rule of thumb, in the case of a design with two groups and two repeated measures
(2 x 2 design). Note that, although this paper is primarily concerned with designs
including both between-subjects and within-subjects factors, the following estimate
applies for any kind of design, as long as the method of unweighted means analysis
of variance was used in the original study.

Consider a 2 x 2 design with repeated measures on one factor, and with n1 par-
ticipants in Group 1 and n2 participants in Group 2. We denote N = n1 +n2 and:

e = n1

N
− 1

2
,

which is a measure of deviation from a balanced design. We also denote by αu the
coefficient corresponding to an unbalanced design with n1 and n2 participants in
groups 1 and 2, respectively, and by αb the coefficient corresponding to a balanced
design with a total of N participants. In the situation described above, αu is the real
coefficient, corresponding to the original study, while αb is the best guess of the
meta-analyst, given the total number of participant , N .

Using equation (22), we find that:

αu = 1
2

(
1
n1

+ 1
n2

)

= 1
2N

(
1

0.5+ e +
1

0.5− e
)

= 1
N

(
1

1+ 2e
+ 1

1− 2e

)
(54)

Taking e = 0, we see that

αb = 2
N

(55)

Now, to estimate Spooled (or r ), one has to multiply a quantity independent of α
by the square root of α. Therefore, the error introduced by mistakenly assuming a
balanced design is given, in proportion, by:

Bias =
√
αb −√αu√

αu

=
√

2−
√

1
1+2e + 1

1−2e√
1

1+2e + 1
1−2e

=
√

1− 4e2 − 1 (56)

Now, by asymptotic expansion of the square root function (see Holmes, 1995), one
finds that:

Bias = (1− 2e2 + o(e2))− 1 = −2e2 + o(e2) (57)
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Therefore, when the error e is small, the bias introduced by assuming a balanced
design is a decrease (in proportion) of approximately 2e2 in the estimates of Spooled
and r . For example, in a design with 15 participants in group 1 and 25 participants
in group 2, we have:

e = 15
40
− 1

2
= −.125 (58)

Therefore, the bias, as calculated from equation (36), is a decrease of 3.175% in the
estimates, while our approximation (37) gives a decrease of approximately 3.125%.


