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Abstract

Self-reflection and thinking about the thoughts and behaviors of others are important skills for humans to function in the
social world. These two processes overlap in terms of the component processes involved, and share overlapping functional
organizations within the human brain, in particular within the medial prefrontal cortex (MPFC). Several functional models
have been proposed to explain these two processes, but none has directly explored the extent to which they are distinctly
represented within different parts of the brain. This study used multivoxel pattern classification to quantify the separability
of self- and other-related thought in the MPFC and expanded this question to the entire brain. Using a large-scale
mega-analytic dataset, spanning three separate studies (n = 142), we find that self- and other-related thought can be reliably
distinguished above chance within the MPFC, posterior cingulate cortex and temporal lobes. We highlight subcomponents
of the ventral MPFC that are particularly important in representing self-related thought, and subcomponents of the
orbitofrontal cortex robustly involved in representing other-related thought. Our findings indicate that representations of
self- and other-related thought in the human brain are described best by a distributed pattern rather than stark localization
or a purely ventral to dorsal linear gradient in the MPFC.
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Introduction
A hallmark of human cognition is the ability to reflect upon
one’s thoughts and behaviors, which inform one’s own self-
image (James 1890; Gallagher 2000). Similarly, humans are also
adept social learners, observing others’ behaviors, inferring their
mental states, and using this to inform personal impressions
(Frith and Frith 2006; Ma et al. 2014). Whether and how
judgments about the self and others are distinct is a question
that has interested psychologists for decades (Rogers et al. 1977;
Bower and Gilligan 1979). Neuroimaging research has more
recently contributed to this question, and identified regions of

the brain associated with self-related and other-related thought.
The extent to which these neural correlates overlap, however, is
still not fully understood. Systematic reviews, individual studies,
and meta-analytic research highlight that the medial prefrontal
cortex (MPFC), in particular, is involved in both self- and other-
related thought (Pfeifer et al. 2007; Jenkins et al. 2008; Bergstrom
et al. 2015; Wagner et al. 2019), but that there is likely not a stark
sublocalization of these processes (Denny et al. 2012). Instead
of a binary distinction between these two processes, it is likely
that they are represented grossly similarly in some parts of the
brain, but it is not known how distinguishable they are in terms
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of more granular representations. Therefore, this research aims
to estimate where, and to what extent, self- and other-related
thought are distinctly represented in the MPFC, and throughout
the brain as a whole.

Neural Correlates of Self-Related Thought

There are several regions of the brain that are associated with
self-related processing, including the posterior cingulate cortex,
precuneus, and MPFC (Kelley et al. 2002; Ochsner et al. 2004;
Mitchell et al. 2005; Johnson et al. 2006; Jenkins and Mitchell
2010; Martial et al. 2018). Whether individuals are assessing
emotional content or episodes related to the self (Ochsner et al.
2004; De Pisapia et al. 2019; Verfaellie et al. 2019), the similarity
of others’ faces to their own (Mitchell et al. 2005) or their own
personality traits (Heatherton et al. 2006; D’Argembeau et al.
2007; Beer et al. 2010; Rameson et al. 2010; Martinelli et al. 2013),
the MPFC is reliably activated.

The MPFC is a relatively large area of the brain, and both
dorsal and ventral portions of the MPFC have been reported
in separate research studies of self-related thought (Ochsner
et al. 2004; van der Meer et al. 2010). Some research, however,
argues that self-related processing is most robustly localized
to ventral portions of the MPFC (VMPFC) (van der Meer et al.
2010; Wagner et al. 2012). This position is bolstered by the fact
that patients with damage to the VMPFC also show significant
deficits in their ability to remember self-relevant information
and memories (Wheeler et al. 1997; Philippi et al. 2012). Indeed,
individuals with focal damage to the VMPFC have notable dif-
ficulty in remembering information about themselves, but do
not show similar difficulties in remembering information about
other people (Marquine et al. 2016). The partly specialized role
for the VMPFC in processing information about the self, relative
to others, is further specified by patients with lesions to regions
other than the VMPFC (e.g., lateral occipital, temporal, and pari-
etal regions) who do not show similar deficits in self-referential
processing (Philippi et al. 2012).

Neural Correlates of Other-Related Thought

The MPFC is also activated when individuals make trait judg-
ments about other people (Mitchell et al. 2002), form impressions
of others (Mende-Siedlecki et al. 2013), hold social information
in working memory (Meyer and Collier 2020), and when they
infer the mental states of others (Saxe 2006; Blakemore 2008;
Hampton et al. 2008; Skerry and Saxe 2014). A large body of
work has shown that the dorsal MPFC (DMPFC) is more strongly
associated with the processing of information relevant to other
people than the self (see Van Overwalle 2009 for review). Further,
direct contrasts of thinking about others and thinking about
oneself have revealed greater activation in the DMPFC, support-
ing the specificity hypothesis (D’Argembeau et al. 2007). The
DMPFC also exhibits increased coherence with other regions
of the default mode network (e.g., posterior cingular cortex
(PCC), temporoparietal junction (TPJ)) when assessing the traits
of others but not oneself, further linking this subregion of the
MPFC to social cognition (Hassabis et al. 2014).

More broadly, thinking about the traits and behaviors of
others and inferring their thoughts are also all—to different
degrees—associated with activation in the temporal parietal
junction, the precuneus, and superior temporal sulcus. (Saxe
and Waxler 2005; Saxe 2006; Dodell-Feder et al. 2011). These
regions also provide useful information in the prediction of

socially relevant cognition, like assessing the social status of
other individuals (Parkinson et al. 2017).

Overlap of Self- and Other-Related Thought

Other neuroimaging literature, however, provides reason to
question whether self- and other-related thought can be starkly
linked to distinct portions of the MPFC (Saxe et al. 2006). For
example, ventral regions of the MPFC are frequently identified in
studies of socially oriented thought (Kelley et al. 2002; Lou et al.
2004; D’Argembeau et al. 2005; Koster-Hale et al. 2017) and dorsal
regions are similarly activated during self-oriented thought
(Craik et al. 1999; Gusnard et al. 2001; Schmitz et al. 2004; Seger
et al. 2004). Such double associations have motivated alternative
models of organization within the MPFC. More specifically,
researchers have suggested that self- and other-related thought
may be organized along a ventral to dorsal gradient within the
MPFC (Mitchell et al. 2005; Heatherton et al. 2006; Tamir and
Mitchell 2010). Perhaps the most influential evidence for this
perspective comes from a meta-analysis conducted by Denny
et al. (2012). In this study, the authors conducted a review of
the literature on self-related thought and other-related thought,
and found 47 peak activations for self-thought and 43 peak
activations for other-thought across 107 studies within the
MPFC. The authors then conducted a logistic regression using
the z-coordinate of each activation to model the organization
of this body of research. They found a ventral–dorsal gradient,
such that peak activations located more ventrally were more
likely to be (though not exclusively) reported in a study of self-
related thought and activations located more ventrally were
more likely to be (though not exclusively) reported in a study of
other-related thought (Denny et al. 2012).

Denny et al. (2012) provide a parsimonious probabilistic
model for how self- and other-related thought are distributed
within the MPFC. What this model does not answer, however,
is whether, and to what extent, these two processes can be
distinguished within subregions of the MPFC. Indeed, even
within the data described by Denny and colleagues, there is
substantial overlap in where studies of self- and other-related
thought report activations. This suggests that in addition to a
dorsal–ventral gradient, there may be varying degrees of overlap
in the function of specific regions. In order to directly test the
question of separability within subregions, it is necessary to
compare direct observations of self-related and other-related
thought within the MPFC; a level of analysis which meta-
analysis abstracts from, and which requires more direct access
to raw data. Denny et al. reveals that, indeed, self- and other-
related thought are distributed throughout the MPFC, but do
not directly quantify the extent to which these distributed
representations are separable.

Quantifying the Separability of Self- and Other-Related
Thought

The introduction of multivariate pattern analysis (MVPA) and
machine learning in neuroimaging research has made it possible
to identify differences between cognitive states through the
analysis of their distributed patterns of activation. In one of the
foundational MVPA studies, Haxby and colleagues found that
multivariate patterns within the ventral temporal (VT) cortex
were more sensitive to differences between different object
categories compared to univariate analysis (Haxby et al. 2001;
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Norman et al. 2006). Activation related to different object cat-
egories in the VT overlapped substantially, but the distributed
patterns related to each were discernible. Analogously, self- and
other-related processing overlap substantially in the MPFC, but
it is not yet clear to what extent the patterns of activation related
to each are distinguishable.

Recently, there has been a growing interest in applying
multivariate approaches to the study of self-related processing
and other-related processing (Wagner et al. 2019; Courtney and
Meyer 2020; Koski et al. 2020). This research has brought new
understanding to the overlap of experienced and vicarious
pain, and has found that the pattern of activation elicited by
one is notably similar to the other (Corradi-Dell’Acqua et al.
2016; Krishnan et al. 2016). More specific to the aims of the
current analysis, Oosterwijk et al. (2017) found that a model
trained to classify different forms of self-related processing
(e.g., thinking about one’s own emotions, actions or physical
feelings) is also able to classify these different forms of thinking
when they are about other people (Oosterwijk et al. 2017).
The evidence thus far indicates that self- and other-related
processing are not only overlapping in where they activate the
cortex but also, at least partially, in how they activate the cortex.
In the current study, we ask not how well a model trained on
different forms of self-related processing generalizes to other-
related processing, but instead ask whether, and to what extent
self-related processing can be distinguished from other-related
processing.

Here, we employ a mega-analytic approach to this question,
which integrates raw data from multiple studies. Specifically,
in this study, we analyze the data from a large sample of par-
ticipants from three separate studies ((Cooper et al. 2015; Falk
et al. 2015); one unpublished study) to ask how separable self-
and other-related thought are within the MPFC and how these
processes are functionally organized. We employ machine learn-
ing techniques including regularization and crossvalidation to
quantify the extent to which these processes are distinct in the
MPFC in particular as well as throughout the whole brain. We ask
four directed questions regarding the functional organization
of self- and other-related processing within the brain. First, we
ask whether information from the MPFC is sufficient to reliably
distinguish between self- and other-related thought. Second,
we ask if the derived organization of regions that distinguish
between self- and other-related thought in the MPFC follows
a linear pattern along a ventral–dorsal gradient, or whether
this organization is more complex. Third, we move beyond the
MPFC to explore whether including information from the entire
brain significantly improves the characterization and prediction
of self- and other-related thought. Finally, we explore the map
of voxel weights from the whole brain to ask how self- and
other-related thought are organized outside of the MPFC.

Materials and Methods
Participants

One hundred and forty-two (N = 142) participants were included
in this analysis. Participant data were collected as part of
three separate neuroimaging studies (Nstudy1 = 60; Nstudy2 = 39;
Nstudy3 = 43). These three neuroimaging experiments included
tasks, which probed the neural substrates of self- and other-
related thought among other tasks unique to each study.
Participants self-identified as 55% women and 45% men.
Participants’ ages ranged from 18 to 77 with an average

age of 29 years (SD = 12.61). Participants self-identified as:
10% Asian, 15% Black, 6% Latino, 5% multiracial, 56% White,
8% other ethnicity. The experimental protocols for each
study were approved by the relevant university Institutional
Review Boards (University of Pennsylvania and University of
Michigan). Informed written consent was obtained from all
participants.

Task and Procedure

Participants were recruited for three different neuroimaging
experiments, all of which included as part of their procedures a
paradigm called the self-localizer task. The self-localizer task is
a widely used task to localize areas of the brain associated with
self-related thought (Schmitz and Johnson 2006). Participants in
the self-localizer task are presented with trait adjectives and are
asked to make judgments about each word after its presentation.
In all three of the current experiments, participants were asked
to make judgments about the relevance of words to themselves,
the relevance of words to another person, or whether the words
had positive or negative valence. One of the three experiments
(study 3) had additional conditions that varied slightly from the
other two (described below), but the judgments focused on in the
current analysis (relevance to self, relevance to another person)
were shared across all three.

In studies 1 (Falk et al. 2015) and 2 (unpublished), participants
made trait adjective judgments under three conditions: word
describes you, word describes then-president Barack Obama,
and word is positive or negative. Participants completed six
blocks of each condition, each containing five trait adjective
trials, for a total of 30 trials per condition. For each block par-
ticipants viewed both positive and negative trait adjectives in a
pseudorandom order. Each block of words began with a screen
that indicated to the participant what type of judgment they
were being asked to make. Each word was then presented and
the participant made a judgment about the word. The word and
the participant’s decision remained on the screen until 2.5 s had
elapsed, after which the next word was presented. Participants
responded “yes” or “no” or “positive” or “negative” depending
on whether they were making relevance judgments or valence
judgments. Both “yes” and “no” responses in the self and social
judgment constitute thinking about oneself or a social target, as
either requires participants to reflect on their traits (or the social
target’s traits) and confirm or deny whether the given adjective
matches.

In the third study (Cooper et al. 2015), participants made
trait adjective judgments under five conditions. Four conditions
required participants to take either their own perspective or the
perspective of a friend, and judge whether the word described
themselves or their friend. In this way, the participant could
either be making judgments about whether they thought a word
described themselves, whether they thought a word described
a friend, whether they thought their friend would think the
word described themselves, or whether they thought their friend
would think the word described their friend. In the current
analysis, to parallel the first two studies, we only focus on
conditions in which participants took their own perspective and
judged whether the words described themselves or a friend.
Participants also completed a valence judgment condition like
those in the studies 1 and 2. All task procedures and timing were
the same as in studies 1 and 2 except that in this condition a
total of 36 words were viewed and each block contained 6 trait
adjectives, three positive and three negative.
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Image Acquisition

Data from study 1 were acquired on a 3 Tesla GE Signa MRI
scanner. Functional images were acquired using a reverse spiral
sequence (TR = 2000 ms, TE = 30 ms, flip angle = 90◦, 43 axial
slices, FOV = 220 mm, slice thickness = 3 mm, voxel size = 3.44,
3.44, 3.0 mm). In-plane T1-weighted images (43 slices, slice
thickness = 3 mm, voxel size = 0.86, 0.86, 3.0 mm) and high-
resolution T1-weighted images (124 slices, slice thickness = 1.02,
1.02, 1.2 mm, SPGR) were also acquired for use in coregistration
and normalization. Data from study 2 were acquired on a 3 Tesla
Siemens Magnetom MRI scanner. Functional images for study
2 were recorded using a multiband sequence (TR = 1500 ms,
TE = 25 ms, flip angle = 60◦, 54 axial slices, FOV = 208 mm,
slice thickness = 3 mm, voxel size = 3.0, 3.0, 3.0 mm). High-
resolution T1-weighted images were also acquired (160 slices,
voxel size = 0.9, 0.9, 1.0 mm) for use in coregistration and
normalization. Finally, data from study 3 were acquired
using a 3-Tesla GE Signa MRI scanner. Functional images
were acquired using a reverse spiral sequence (TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, 43 axial slices, FOV = 220 mm,
slice thickness = 3 mm, voxel size = 3.44, 3.44, 3.0 mm). In-
plane T1-weighted images (43 slices, slice thickness = 3 mm,
voxel size = 0.86, 0.86, 3.0 mm) and high-resolution T1-weighted
images (124 slices, slice thickness = 1.02, 1.02, 1.2 mm, SPGR)
were also acquired for use in coregistration and normalization.

fMRI Analysis

Data were preprocessed using Statistical Parametric Mapping
(SPM8; Wellcome Department of Cognitive Neurology, Institute
of Neurology, London, UK) for all stages except for initial despik-
ing, which was performed using the 3dDespike program imple-
mented in the AFNI toolbox (Cox 1996). Preprocessing steps
for all three datasets included slice time correction, realign-
ment, coregistration with both T1-weighted images, segmenta-
tion, and normalization to the MNI-152 and resampling to the
same voxel size (3 mm).

Task block condition-specific estimates were calculated by
running a voxelwise first-level general linear model for every
participant, in which the entire block of a specific condition
was modeled as its own separate regressor (performed with
SPM12). This regression approach (Rissman et al. 2004), results
in a separate whole brain map estimate for every self-judgment
and other-judgment condition block. For our analysis of the
MPFC, all first level block images were then masked using a
binary gray matter image of the entire medial wall (3596 voxels).
Following Denny et al., the boundaries for this mask were |x| < 25,
y > 15. Importantly, we included the OFC in our mask, unlike
Denny and colleagues, who restricted their mask to voxels above
z = −5 (Denny et al. 2012). For our whole brain analysis, we also
masked all first-level block images using a binary gray matter
image (Shen et al. 2013). T-maps for the MPFC and whole brain
data were flattened to a 1D array using custom code and the
python neuroimaging toolbox, nilearn (Abraham et al. 2014).

MVPA Training and Testing

Participants’ data were first shuffled and split into a training
and test set using an 80/20 split, and thus containing 111 and
32 participants respectively. Individual participants’ data were
kept together for this train-test sample split, such that any
given participant’s data only existed in one of these two sam-
ples. For model training, we implemented a Ridge-PCR analysis

method to differentiate self- and other-related processing for
the MPFC and whole brain, respectively. This method closely
follows Wager et al.’s (2011) LASSO-PCR method, in which PCA
is run prior to model tuning and training. The motivation of this
approach is twofold: first, PCA is initially performed in order to
account for the tendency of L1 and L2 regularization to ignore
the natural covariance in fMRI data and select or downweigh
noncontiguous voxels, and second PCA significantly reduces the
size of the feature space during model training, which reduces
the computational burden of performing permutation proce-
dures. Our analysis diverged from the LASSO-PCR approach,
in that we chose to implement a Ridge regression in order to
maintain all features during model training (Hoerl and Kennard
1970). Similar to LASSO-PCR, Ridge-PCR returns linear feature
weights, which allowed for easily interpretable brain maps.

PCA was performed with scikit-learn (version 0.22.1), which
uses a LAPACK routine to compute the singular value decom-
position (http://www.netlib.org/lapack/faq.html). Following the
procedures of Wager et al., we retain a full-rank set of compo-
nents for both MPFC and whole-brain analyses. There are 1145
observations in the training data (significantly fewer observa-
tions than voxels in both MPFC and whole brain), which resulted
in n-observations minus 1 principle components, or 1144. In
addition to the findings of Wager et al., classification analysis
using a full-rank set of components has been shown to be a pow-
erful method for discriminating various psychological processes
from neuroimaging data (Chang et al. 2015; Krishnan et al. 2016;
Koban et al. 2021).

Model development for the MPFC and whole brain respec-
tively was performed using the python machine-learning tool-
box, scikit-learn (Pedregosa et al. 2011). To train and tune classi-
fiers, 5-fold randomized crossvalidation was used. A grid-search
protocol was implemented to tune the L2 regularization penalty
hyperparameter, which tested values between 0.001 and 1 at
increments of 0.1. For the classifier, the hyperparameter that
resulted in the best average validation accuracy value (within
folds) was finally retrained on all training data and carried for-
ward for out-of-sample testing with the independent, held-out
test set.

Classification models were tested out-of-sample for their
predictive accuracy on the remaining self and other block
images in the test sample (N = 384 images across 32 test-
set participants). Confidence intervals for out-of-sample
test accuracy were derived using a bootstrap procedure, in
which 1000 bootstrap samples were drawn with replacement.
Confidence intervals that do not include 50% (chance) are
considered significant.

We additionally carried out all of the above procedures using
alternative classification models (PLS-DA, SVC-PCA; Platt 1999;
Barker 2010) in order to establish that our model results were
not dependent on our specific methodological choices. These
methods indeed returned very consistent results to our main
analysis, and details of these procedures can be found in our
Supplementary Materials.

Results
MPFC Classification

To differentiate self- and other- related cognition within the
MPFC a Ridge-PCR model was tuned and trained on data
extracted from the MPFC. Block images were used for this proce-
dure. To first assess the predictive capacity of these models, the
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within sample accuracy for each of five stratified crossvalidation
folds was calculated. Overall, the model performed well within
the training sample with an average validation accuracy score
across folds of 63.7% (min = 57%, max = 66%). The component
weights for the trained model were used to predict whether a
not-yet-observed image came from a condition under which a
participant was engaging in self- or other-related thought. The
MPFC Ridge-PCR model achieved a mean out-of-sample test
accuracy of 58.9% (CI = [54%, 64%]).

Whole Brain Classification

Analyses aimed at distinguishing self- versus other-related pro-
cessing were next repeated using data from the entire brain. A
Ridge-PCR classifier was trained and tuned in the same fashion
as the MPFC analysis using block-level images and was then
tested out of sample for its predictive accuracy. Training pre-
diction accuracy was again calculated for every fold of the 5-
fold cross validation and averaged for the model. The whole
brain model performed well in the training sample, achieving
a training accuracy score of 71.8% (min = 67%, max = 75%). The
whole brain Ridge-PCR classifier had a mean out of sample
classification accuracy score of 67.7% (CI = [62%, 73%]). The test
accuracy score of the whole brain model was also direction-
ally more accurate than the model using MPFC alone however,
the confidence intervals obtained through resampling overlap
substantially.

Organization of MPFC Model Weights

To investigate whether there is a ventral to dorsal gradient
in the organization of voxel weights for the classification of
self- versus other-related thought, we examined model weights
from the Ridge-PCR model organized linearly from the most
ventral to dorsal portion of the MPFC. These model weights
represent the relative contribution and direction of each voxel
in discriminating between self- and other-related thought. To
obtain this organization, we projected model weights back into
their original 3-D voxel space by multiplying the PCA component
matrix with the best performing model regression coefficients.
We correlated (Pearson r) the ventral to dorsal position (i.e., z-
coordinate) of every voxel in the MPFC with the model weight
for each voxel. We found initial supporting evidence for a dorsal
to ventral gradient in the organization of MPFC weights (r = 0.09,
P = 0.03); however, this relationship was weak, suggesting the
possibility of a more complex organization (Fig. 1).

We obtained a P-value to test the significance of this correla-
tion through a permutation procedure, which involved shuffling
the order of the training labels, retraining the model, projecting
the trained model weights back into their original 3-D space,
and computing the z-coordinate correlation 1000 times. We also
tested the reliability of the individual model weights through
this same permutation procedure, resulting in a P-value for every
model weight (voxel). (see supplementary materials from Pereira
et al. (2009) for review of procedures). We then thresholded
our model weights, controlling for multiple comparison (FDR
corrected, α = 0.05). Clusters in the OFC and VMPFC survived this
thresholding procedure, as can be seen in Figure 2.

Organization of Whole Brain Model Weights

Voxel weights from the whole brain were also back projected
into their original 3D voxel positions. Model weights, that

is, the relative contribution and direction of each voxel in
discriminating between self- and other-related thought, were
examined across the entire brain. To test the reliability of
the model weights, we repeated the permutation procedures
reported in the previous section for the whole brain and
thresholded our model weights, controlling for multiple
comparison (FDR corrected, α = 0.05). We found that the MPFC
was reliably involved in discriminating between self- and
other-related processing as were other regions throughout
the brain. Peak voxel weights coding for self-related thought
were primarily localized to the VMPFC and anterior cingulate
cortex (ACC). Voxels coding for other-related thought were
more distributed throughout the brain, showing peak voxel
weights in the PCC, left angular gyrus, and left temporal lobe
(Fig. 3).

Discussion
Can patterns of activation within the brain provide reliable
information for discriminating between self- and other-related
thought? We first focused on the MPFC, a region frequently
and reliably implicated in both processes (Heatherton 2011), and
then moved to examine patterns across the entire brain. Using
raw data (i.e., a mega-analysis, as compared to a meta analysis;
Denny et al. 2012) relevant to the question of how these pro-
cesses are distinctly represented, we provide novel evidence that
self- and other-related processing can be reliably distinguished
using patterns of activity restricted to voxels within the MPFC.
We also found that self- and other-related processing can be
reliably distinguished using activity apparent across the whole
brain, with differential activation in ACC and VMPFC particularly
connected to self-related thought, and PCC, left angular gyrus
and left temporal lobe particularly connected to other-related
thought. In addition to quantitatively evaluating the explanatory
power of the MPFC (and whole brain) for discriminating between
self- and other-related thought, we also report data supporting
the hypothesis that self- and other-related processing are func-
tionally distributed along a ventral to dorsal gradient within the
medial frontal wall (Denny et al. 2012). However, we also find
that a purely linear pattern does not fully explain the effect;
rather, self-related thought is most reliably represented within
the middle prefrontal cortex and other-related thought within
both the OFC and DMPFC, suggesting that curvilinear, rather
than linear, gradient might characterize the organization of self-
and other-related cognition within the medial wall of the frontal
cortex.

In our analysis of the MPFC, we developed a model to dis-
criminate between self- and other-related thought. This model
performed well out-of-sample, correctly predicting 59% of our
test observations. After training and testing this model, we
also investigated how the multivariate pattern of weights were
organized within the MPFC, and tested whether model weights
followed a linear ventral–dorsal gradient. Here, our analysis of
voxel weights and their respective position along the axial plane
suggests a more complicated pattern that cannot be described
with a simple linear gradient. Our results highlighting a more
complex pattern are also consistent with previous reviews of
the MPFC that note a significant overlap in how self- and other-
related processes are represented in the MPFC (Wagner et al.
2012), and also help explain how self- and other-related thought
can appear overlapping (see Denny et al. 2012), but still be
distinguishable within the MPFC.
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Figure 1. Organization of unthresholded voxel weights from the MPFC along the axial plane. Lighter blue indicates stronger weight and encoding for other-related

processing, lighter orange indicates stronger weight and encoding for self-related processing. Z-coordinates for this graph are normalized between 0 and 1, the lowest
z-coordinate in this analysis was z = −30 and the highest z = 70. Highlighted voxels indicate clusters associated with peak weights represented in the distribution. Peak
weights for self-related processing were centered around z = −2, peak weights for other-related processing were centered around z = −14 and z = 24. A Loess regression
was used to generate the smoothed line in the figure.

Figure 2. MPFC Ridge-PCR model weights (FDR corrected, α = 0.05), back projected onto the whole brain. These results highlight most robust patterns differentiating

self-related thought in the VMPFC, and other-related thought in the OFC and a small portion of the DMPFC. Brighter orange indicates greater weight towards encoding
self-related thought, brighter blue indicates greater weight towards encoding other-related thought.

We found that voxels that were more strongly and reliably
associated with the encoding of self-related (vs. social) pro-
cessing (controlling for all other activation in the MPFC) were
found within the ventral portion of the MPFC and extended

upwards through the ACC. This result falls in line with a wealth
of previous research linking middle subregions of the MPFC
with self-related thought (Legrand and Ruby 2009; Heatherton
2011). However, as shown in our whole-brain analysis (discussed

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab272/6352380 by U

niversity of Pennsylvania Libraries user on 25 O
ctober 2021



Self-Other Representations Separable Through MVPA Parelman et al. 7

Figure 3. Whole Brain Ridge-PCR model weights (FDR corrected, α = 0.05), back projected onto whole brain. These results highlight the most robust patterns
differentiating self-related thought in the VMPFC, and other-related thought in the PCC, angular gyrus, and temporal lobe. Brighter orange indicates greater weight
towards encoding self-related thought, brighter blue indicates greater weight towards encoding other-related thought.

below) and other research (Rose Addis and Tippett 2008; Murray
et al. 2012), these areas of the MPFC are not solely responsible for
encoding self-related cognition or distinguishing between think-
ing about oneself from thinking about others. Other regions
distributed throughout the human cortex also contribute to this
distinct form of cognition. These results specifically indicate
that when analysis is restricted to the MPFC, a region that
has shown notable functional overlap of self- and other-related
thinking, middle subregions stand out as reliably encoding self-
related thought.

The most influential voxels coding for other-related thought,
however, were found in both the DMPFC and VMPFC, including
the orbitofrontal cortex. Dorsal portions of the MPFC are fre-
quently implicated in thinking about the traits and thoughts
of other people (Mitchell et al. 2005; Baron et al. 2011), and so
our findings complement and extend prior understanding of
this subregion. Further, supplemental analyses using the current
dataset, including a voxel-wise univariate contrast and classifi-
cation with average activation in ventral and dorsal portions of
the MPFC, bolster our confidence in the current findings. Com-
parable voxel patterns to our primary findings were found in
these additional analyses (Supplementary Materials), indicating
that the organization of voxel weights found in our primary
analyses are robust to analytic approaches. Lastly, we also found
the organization of voxel weights to be robust when we trained
the Ridge-PCR model on each of the three studies included in
this mega-analysis separately. Studies 1 and 2 were most similar
to the full sample model, but study 3 provided a less clear
pattern; a result we attribute to its smaller sample size and
alternative task design (see Supplementary Materials).

In addition to DMPFC, we also find that the OFC is important
in reflecting on information about other people. This aligns with
previous findings that the OFC is involved in social cognition
(Beer 2006; Völlm et al. 2006; Weaverdyck et al. 2021), and in
particular is sensitive to differences in trait judgments between
the self and social targets (Beer and Hughes 2010; Hughes and
Beer 2012). These findings also extend previous investigations
of self- and other-related processing in MPFC (e.g., Denny et al.
2012) by further highlighting the OFC’s role in social thinking.
Our use of continuous data in a mega-analysis, as opposed to
summary statistics focused on peak activation from previously
published work, highlights a stronger role of the VMPFC in social
cognition than previously emphasized.

As reflected in our findings above, and a substantial body
of prior research, MPFC is centrally involved in both self- and
other-related processing. However, recent work also highlights
the value of incorporating whole brain patterns for character-
izing psychological states (Chang et al. 2015; Van Oudenhove

et al. 2020). Thus, in addition to our focus on MPFC, we also
developed an additional of model, which classified self- and
other-related processing using information contained within
the entire brain. The inclusion of this information generated a
directional improvement in the performance of our model, such
that our best performing whole-brain model improved out-of-
sample prediction accuracy by nearly 9% relative to our best
performing MPFC model, and 18% better than chance. Previous
research employing MVPA techniques to classify higher order
cognitive processes, such as social perception (Brosch et al. 2013)
and different aspects of self-related thought (Oosterwijk et al.
2017), tend to achieve classification accuracy scores of roughly
10–15% greater than chance.

Using data from the entire brain also allowed us to under-
stand the relative contribution of the MPFC in encoding self-
and other-related thought. Comparing the voxel weights from
our best performing MPFC model and best performing whole-
brain model, we saw that many of the most important voxels
identified in the MPFC model remained among the most pre-
dictive within the whole-brain model. These consistent feature
weights lend even stronger support for the notion that the MPFC
is a critical brain region in processing both cognition relating to
oneself and cognition relating to other people. The whole-brain
results also provide additional insights into what other areas
of the brain are important for processing information about
other people relative to information about the self. Specifically,
consistent with past meta-analyses (e.g., Denny et al. 2012;
Murray et al. 2012), we found that regions associated with the
default mode network (e.g., PCC, temporal lobe and angular
gyrus; Raichle 2015) also contained the most strongly weighted
voxels encoding for differentiating other-related thought from
self-related thought. The PCC and MPFC are associated with both
self and social cognition (Saxe and Powell 2006; Qin and Northoff
2011; Brewer et al. 2013; Mahy et al. 2014; Wagner et al. 2019); we
also provide evidence from our whole brain analysis that these
regions are important for processing information about other
people differentially from the self.

Machine learning techniques in neuroimaging are becoming
increasingly popular within the field, and can be leveraged to
generate externally valid models that can be iteratively refined
and tested in additional contexts. Thoughtful interpretation of
these models and their weights is necessary though, as they are
not a direct measure of change in voxel activation in response
to study manipulations. Coefficients from these types of models
represent the relative contribution of brain regions in discrim-
inating between conditions and the direction of their associ-
ations. The back-projected maps from the models presented
here help to describe the relative influence of brain regions
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in coding for self against other related thought, and can be
further contextualized by comparing them with more traditional
contrast maps (see Supplementary Materials). In addition to
careful interpretation of voxel weights, researchers must also be
mindful of the bias-variance tradeoff implicit in modeling and
prediction procedures, and how this affects meaningful infer-
ence. Here, we have made efforts to implement several tech-
niques like stratified k-fold crossvalidation and out-of-sample
bootstrapping to bolster confidence in the generalizability of our
findings.

Looking forward, future multivariate methods like multivoxel
searchlight analysis, will further help to understand the role of
the MPFC in processing self- and other-related thought. More
specifically, these methods can help to understand where in
the MPFC these two processes are most reliably distinguishable,
a question not answered by the analytic strategy taken here
The current study utilized data from three independent stud-
ies, which all asked individuals to explicitly judge the traits of
themselves and other people, affording a relatively large over-
all dataset yielding a complementary high-precision method
for identifying mechanisms of self and social cognition when
compared to traditional coordinate-based meta-analyses.

Summary and Conclusion
The current study found that self- and other-related thought are
represented in partially distinct regions within the MPFC. Self-
and other-related cognition were represented in both dorsal
and ventral regions of the MPFC, and were weakly organized
along the ventral–dorsal gradient previously proposed, with our
results clarifying that clusters of VMPFC and OFC are also partic-
ularly important for distinguishing social thought. Whole brain
analysis further confirmed that the MPFC was primarily respon-
sible for representing these processes, but that the PCC and
other regions of the default mode network were also involved
in processing thoughts relating to other people. We provide here
a key step in applying machine learning techniques to develop
neural models of self- and other-related processing.

Positionality Statement

Mindful that our identities can influence our approach to
science (Roberts et al. 2020), the authors wish to provide
the reader with potentially relevant information about our
backgrounds. With respect to race/ethnicity, one author self-
identifies as Asian; five as white. With respect to gender identity,
4 self-identify as men, 2 as women.

Citation Diversity Statement

Recent work in several fields of science has identified a bias
in citation practices such that papers from women and other
minority scholars are under-cited relative to the number of
such papers in the field (Maliniak et al. 2013; Caplar et al.
2017; Chakravartty et al. 2018; Dion et al. 2018; Thiem et al.
2018; Dworkin et al. 2020; Zhou et al. 2020). Here, we sought
to proactively consider choosing references that reflect the
diversity of the field in thought, form of contribution, gender,
race, ethnicity, and other factors. First, we obtained the predicted
gender of the first and last author of each reference by using
databases that store the probability of a first name being
carried by a woman (Dworkin et al. 2020; Zhou et al. 2020).

By this measure (and excluding self-citations to the first and
last authors of our current paper), our references contain 24%
woman(first)/woman(last), 21% man/woman, 20% woman/man,
and 35% man/man. This method is limited in that (a) names,
pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity
and (b) it cannot account for intersex, nonbinary, or transgender
people. We look forward to future work that could help us to
better understand how to support equitable practices in science.
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